CS 419: Production Rendering

Octrees Bounding Volume Hierarchies

Eric Shaffer

Some Content Taken from Physically Based Rendering by Pharr et al.

Lots of types of Spatial Hierarchies

Taken from Physically Based Rendering by Pharr et al.

Spatial Hierarchies

- Decompose space into partitions
- Use a tree-like structure
- Point location computed by recursive search

Spatial Hierarchies

- Leaves correspond to regions of space
- Leaves contain list of all objects in that region

Octrees

- Start with axis aligned bounding box
 - If termination criteria not reached
 - Recursively split current cell into octants

Flipped Octree

- $\hfill\square$ Construct fine uniform grid using 2^k cells along each axis
 - Use sparse data structure: hash table
- We will have k+1 levels in the octree
- For occupied cell at level k
 - Right shift cell indices
 - Add parent cell and any child info at level k-1

Bounding Volume Hierarchies (BVHs)

Three stages to construction:

- 1. Bound each primitive
- 2. Build a tree using recursive splitting
- 3. Convert tree to pointerless structure...more compact
- BVH nodes store BV extent plus centroid
- Leaves store primitives
- Each primitive appears in only one node
- If bounding boxes overlap, must traverse more than one subtree
- Make internal nodes compact
 - 8 byte representation means 4 fit in 32 byte cache line
 - In PBR, moving from 16 bytes to 8 resulted in 20% speedup

Which axis to split?

How to split? Some simple heuristics...

Mid-point

- Compute mid-point of the primitives centroids
- Split along a principal axis

Split-equal

- partition primitive into 2 sets
- n/2 objects with smallest coordinate centroids
- n/2 objects with largest coordinate centroids

Problems with simple solutions

Midpoint works well

Midpoint and Equal are suboptimal

A better split

Surface Area Heuristic (SAH)

If we choose not to split a node, the ray-tracing cost is $\sum_{i=1}^{N_{A}} t_{isect}(i)$

Ν

If we split:
$$c(A, B) = t_{trav} + p_A \sum_{i=1} t_{isect}(a_i) + p_B \sum_{i=1} t_{isect}(b_i)$$
,

Probability of ray going through convex volume A if it goes through enclosing convex volume W is S_A/S_w
 S_x surface area in volume X...

Surface Area Heuristic (SAH)

- Bucket the axis...measure the cost of splitting at bucket boundaries
 What would be a more principled alternative? Why not do that?
- □ Traversal cost 1/8 of intersection cost...intersection cost is 1

Compact Layout

Stored in depth-first order

- First child immediately after parent node
- Offset to second child stored explicitly

Traversal of BVHs for Ray Tracing

Test ray against root BV for intersection...

- Recurse (but not really...)
- □ For a leaf, test against primitives
- □ For a parent, test 2 children....