CS 419: Production Rendering

 KD-Trees
 BSP-Trees

 Eric Shaffer

Some content taken from *Physically Based Rendering* by Pharr et al.
Lots of types of spatial hierarchies

KD-Tree Oct-Tree BSP-Tree

Taken from *Physically Based Rendering* by Pharr et al.
Building a kd-tree

- Splits are axis-aligned
- But we choose location of that split plane
- Alternate the axis that we split
- We want a **balanced** tree to decrease search time....each internal node prunes half the geometry
Building a 2D kd-tree - example
Algorithm \textsc{BuildKdTree}(P, depth)
1. if P contains only one point
2. then return a leaf storing this point
3. else if $depth$ is even
4. then Split P with a vertical line ℓ through the median x-coordinate into P_1 (left of or on ℓ) and P_2 (right of ℓ)
5. else Split P with a horizontal line ℓ through the median y-coordinate into P_1 (below or on ℓ) and P_2 (above ℓ)
6. $v_{\text{left}} \leftarrow \textsc{BuildKdTree}(P_1, depth + 1)$
7. $v_{\text{right}} \leftarrow \textsc{BuildKdTree}(P_2, depth + 1)$
8. Create a node v storing ℓ, make v_{left} the left child of v, and make v_{right} the right child of v.
9. return v
2D KD-tree Build Time

- Median finding among n numbers takes $O(n)$ time
- What then is the computational cost $T(n)$ for n points?
 - $T(n) = 2T(n/2) + O(n)$
 - $T(1) = O(1)$
- Total build time will be $O(n \lg n)$
3D kd-tree

- Very similar...3 alternating axes instead of 2
- Point location done recursively
- For n points
 - $O(n)$ size structure
 - $O(\log n)$ point location...for balanced tree...
Splitting in 3D

Split In The Middle: Bad!

Midpoint: makes left and right probabilities equal
Cost of R greater than cost of L
Looking at costs

Median: makes left and right costs equal
Probability of hitting L greater than R
Looking at costs

Cost-Optimized Split

\[\text{Cost(node)} = C_{\text{visit}} + \text{Prob(hit L)} \times \text{Cost(L)} + \text{Prob(hit R)} \times \text{Cost(R)} \]
Computing costs for kd-trees

\[\text{Cost(node)} = C_{\text{visit}} + \text{Prob(hit L)} \times \text{Cost(L)} + \text{Prob(hit R)} \times \text{Cost(R)} \]

\(C_{\text{visit}} = \text{cost of visiting a note}\)

\(\text{Cost(L)} = \text{cost of traversing left child}\)

\(\text{Cost(R)} = \text{cost of traversing right child}\)
Computing costs for kd-trees

- Need the probabilities
 - Turn out to be proportional to the surface area
- Need the child cell costs
 - Triangle count is a good approximation

\[
\text{Cost(cell)} = C_{\text{visit}} + \text{SurfArea(L)} \times \text{TriCount(L)} + \text{SurfArea(R)} \times \text{TriCount(R)}
\]

\(C_{\text{trav}}\) is the ratio of the cost to traverse to the cost to intersect

\[C_{\text{trav}} = 1:80 \text{ in PBRT}\]

\[C_{\text{trav}} = 1:1.5 \text{ in a highly optimized version}\]
Build Algorithm

1. Pick an axis, or optimize across x, y, z
2. Build a set of candidate split locations
 - Note: cost extrema must be at bbox vertices
 - Vertices of triangle
 - Vertices of triangle clipped to node bbox
3. Sort the triangles into intervals
4. Sweep to incrementally track L/R counts, costs
5. Output position of minimum cost split
Termination Criteria

- When should we stop splitting?
 - Bad: depth limit, number of triangles
 - Good: when split does not lower the cost

- Threshold of cost improvement
 - Stretch over multiple levels—e.g., terminate if cost doesn’t go down after three splits in a row

- Threshold of cell size
 - Absolute probability SA(node)/SA(scene) low
Simple Traversal

- Simple sequential traversal
 - Find ray entry point to top node bounding box
 - Traverse kd-tree doing point location
 - At leaf, test ray against primitives
 - If no hit, find leaf bbox exit point and repeat search

- How is this inefficient?
Stack-based Traversal

Use a stack of nodes to visit to limit repeated visits
Other Speedups

- Neighbor links (ropes) to reference sibling cells

- Packet tracing: rays with similar origin and direction traced together through the structure
BSP Tree

- Cutting planes have arbitrary orientation
- Splitting can be done along ploygon
 - Choose subset (5?) to test...pick one that yields best balance
Constructing BSP for Point Location

- Build using Principal Component Analysis (PCA)

The scatter matrix is computed by the following equation:

\[S = \sum_{k=1}^{n} (x_k - \bar{m}) (x_k - \bar{m})^T \]

where \(\bar{m} \) is the mean vector

\[\bar{m} = \frac{1}{n} \sum_{k=1}^{n} x_k \]

Compute eigenvalues and eigenvectors
Largest eigenvalue \(\Rightarrow \) eigenvector indicating direction of greatest variation
Cut at mean perpendicular to that vector