CS 419: Production Rendering

Eric Shaffer
Phong Reflectance Model

- Simple model of light reflection from a surface
- Ambient light
- Diffuse light
- Specular light

- Ambient is a hack
 - Simply light throughout space

- Diffuse scatters in all directions

- Specular focuses in the mirror reflection direction

\[I_p = k_a i_a + \sum_{m \in \text{lights}} (k_d (\hat{L}_m \cdot \hat{N}) i_{m,d} + k_s (\hat{R}_m \cdot \hat{V})^\alpha i_{m,s}). \]
Phong Reflectance Model

- V is the vector from surface point to eye
 - Only used for specular term
- N is the surface normal
 - How can you compute it for sphere?
- L is the vector from surface point to light
- α is the shininess factor
 - What does a larger value do to reflections?
 - What makes a surface look smoother?
- Use unit-length vectors
- Dot products are cosine of angle

$$I_p = k_a i_a + \sum_{m \in \text{lights}} (k_d (\hat{L}_m \cdot \hat{N}) i_{m,d} + k_s (\hat{R}_m \cdot \hat{V})^\alpha i_{m,s}).$$
Phong Reflectance Model

- Simple model of light reflection from a surface
 - k_a, k_d, k_s reflectance factors for the surface ambient, diffuse, specular all in RGB with values in $[0,1]$
 - i_a, i_d, i_s illumination from the lights diffuse and specular all in RGB with values in $[0,1]$
 - the m subscript indicates which light

$$I_p = k_a i_a + \sum_{m \in \text{lights}} (k_d (\hat{L}_m \cdot \hat{N}) i_{m,d} + k_s (\hat{R}_m \cdot \hat{V})^{\alpha} i_{m,s}).$$
Walking through some code

- You can grab a simple Python implementation

 https://github.com/shaffer1/Ullinois_Rendering

- Code covers
 - Main rendering loop
 - Sphere class
 - ViewPort class
 - Ray class
 - Diffuse Phong shading

- Code doesn’t include
 - Viewing
 - Plane plane or triangle
 - Sampling
 - Rendering multiple objects