CS 418: Interactive Computer Graphics

Bezier Curves

Eric Shaffer
Geometric Modeling

We will finish the semester by briefly looking at some math for modeling

Geometric modeling is typically done by engineers and artists
- Assisted by computational tools (e.g. Maya or Blender or AutoCAD)
- The software provides a mathematical models of curves/surfaces

For rendering, ultimately everything will be turned into triangles

But modeling triangle-by-triangle would be too tedious

Also, using alternative representations can have other advantages
- More compact
- “Infinite resolution”
- Some tasks are easier
 - e.g. finding derivatives or deforming the geometry
Parametric Curves

Parametric curves defined in 3D:

\[\mathbf{x}(t) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} f(t) \\ g(t) \\ h(t) \end{bmatrix} \]

Simple example: a helix

\[\mathbf{x}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \\ t \end{bmatrix} \]
Beziers Curves

- Type of polynomial curve
- Curve is defined by a modeler (artist) by specifying control points
- Can be defined to generate a polynomial of any degree
 - Cubics are most common
 - Higher degree curve requires more control points
- Can be joined together to form piecewise polynomial curves
- Can form the basis of Bezier patches which define a surface
- Named after Pierre Bezier
 - French Mechanical Engineer worked for Renault
 - Lived 1910-1999
Cubic Bezier Curves

\[x(t) = \begin{bmatrix} -(1 - t)^3 + t^3 \\ 3(1 - t)^2 t - 3(1 - t)t^2 \end{bmatrix} \]

Shape?
Rewrite as a combination of points

\[x(t) = (1 - t)^3 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + 3(1 - t)^2 t \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 3(1 - t)t^2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + t^3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]

Four points form a polygon
- Resembles curve for \(t \in [0, 1] \)
Cubic Bezier Curves

Define a cubic Bézier curve by

\[x(t) = (1 - t)^3 b_0 + 3(1 - t)^2 t b_1 + 3(1 - t) t^2 b_2 + t^3 b_3 \]

2D or 3D points \(b_i \) are the Bézier control points
Control points form the Bézier polygon of the curve
Also written as

\[x(t) = B_0^3(t) b_0 + B_1^3(t) b_1 + B_2^3(t) b_2 + B_3^3(t) b_3 \]

\(B_i^3 \) are called the cubic Bernstein polynomials
The \(b_i \) are called the coefficients of the polynomial \(x(t) \)
Cubic Bezier Curves

Important Properties of Bezier Curves

- Endpoint Interpolation
- Symmetry
- Invariance under affine transformations
- Convex hull property
- Linear precision
Important Properties of Bezier Curves

• **Endpoint Interpolation**
 The curve will pass through the first and last control points:
 \[x(0.0) = b_0 \]
 \[x(1.0) = b_3 \]

• **Symmetry**
 Specifying control points in the order
 \[b_0, b_1, b_2, b_3 \]
 generates the same curve as the order:
 \[b_3, b_2, b_1, b_0 \]
Important Properties of Bezier Curves

- Invariance under affine transformations
 Transforming the control polygon similarly transforms the curve

- Linear Precision
 If b_1 and b_2 are evenly spaced on a straight line, the cubic Bezier curve will be the linear interpolant between b_0 and b_3
Convex Hull Property

The convex hull property

Extrapolation: t outside $[0, 1]$
- Curve not within convex hull (in general)
- Unpredictable behavior

A Bézier curve for $t \in [-1, 2]$
Derivatives

Differentiate each component with respect to $t \Rightarrow$ the tangent vector

$$\frac{dx(t)}{dt} = -3(1-t)^2b_0 + [3(1-t)^2 - 6(1-t)t]b_1 + [6(1-t)t - 3t^2]b_2 + 3t^2b_3$$

Group like terms

$$\frac{dx(t)}{dt} = 3[b_1 - b_0](1-t)^2 + 6[b_2 - b_1](1-t)t + 3[b_3 - b_2]t^2$$

Abbreviated as

$$\frac{dx(t)}{dt} = 3\Delta b_0 (1-t)^2 + 6\Delta b_1 (1-t)t + 3\Delta b_2 t^2$$

where Δb_i is known as the forward difference

Shorten notation: $\dot{x}(t) \equiv dx(t)/dt$
Derivatives

Example

\[x(t) = (1 - t)^3 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + 3(1 - t)^2 t \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 3(1 - t)t^2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + t^3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]

\[\dot{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} (1 - t)^2 + 6 \begin{bmatrix} 0 \\ -2 \end{bmatrix} (1 - t)t + 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} t^2 \]

\[\dot{x}(0.5) = \begin{bmatrix} 1.5 \\ -1.5 \end{bmatrix} \]
Piecing Together Curves

Tangent vectors at the curve’s endpoints:

\[\dot{x}(0) = 3\Delta b_0 \quad \dot{x}(1) = 3\Delta b_2 \]

⇒ control polygon is tangent to the curve at the endpoints
 - property helps with piecing together several Bézier curves
The de Casteljau algorithm is probably the most important algorithm of all of CAGD.

Paul de Faget de Casteljau invented it in 1959.

The de Casteljau algorithm is a recursive algorithm that constructs the point $x(t)$ on a Bézier curve.
The de Casteljau Algorithm

Given: b_0, \ldots, b_3
and a parameter value t

Find: $x(t)$

Compute:

\[
\begin{align*}
b_0^1 &= (1 - t)b_0 + tb_1 \\
b_1^1 &= (1 - t)b_1 + tb_2 \\
b_2^1 &= (1 - t)b_2 + tb_3 \\
b_0^2 &= (1 - t)b_0^1 + tb_1^1 \\
b_1^2 &= (1 - t)b_1^1 + tb_2^1 \\
x(t) &= b_0^3 = (1 - t)b_0^2 + tb_1^2
\end{align*}
\]

Simply repeated linear interpolation!
The de Casteljau Algorithm

A convenient schematic tool for describing the algorithm
– Arrange the involved points in a triangular diagram

\[
\begin{align*}
&b_0 \\
&b_1 \\
&b_2 \\
&b_3
\end{align*}
\]

In the implementation of the de Casteljau algorithm:
– Not necessary to use a 2D array to simulate the triangular diagram
– A 1D array of control points is sufficient
 For example b_0^1 is calculated and loaded into b_0
 (Must save original control polygon)
The de Casteljau Algorithm

Example

\[x(t) = (1 - t)^3 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + 3(1 - t)^2 t \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 3(1 - t)t^2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + t^3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]

Evaluate at \(t = 0.5 \)

\[
\begin{bmatrix}
-1.0 \\
0.0 \\
0.0 \\
1.0 \\
0.0 \\
-1.0 \\
1.0 \\
0.0 \\
\end{bmatrix}
+ 3 \begin{bmatrix}
0.0 \\
-0.5 \\
0.5 \\
1.0 \\
0.0 \\
-1.0 \\
1.0 \\
0.0 \\
\end{bmatrix}
+ 3(0.5) \begin{bmatrix}
0.0 \\
0.25 \\
0.25 \\
0.0 \\
\end{bmatrix}
+ 0.25 \begin{bmatrix}
0.0 \\
-0.25 \\
-0.25 \\
0.0 \\
\end{bmatrix} = x(0.5)
\]
The Matrix Form and Monomials

A cubic Bézier curve:

\[
b(t) = B_0^3(t)b_0 + B_1^3(t)b_1 + B_2^3(t)b_2 + B_3^3(t)b_3
\]

Rewritten in matrix form:

\[
b(t) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} B_0^3(t) \\ B_1^3(t) \\ B_2^3(t) \\ B_3^3(t) \end{bmatrix}
\]

A more concise formulation using matrices:

\[
b(t) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ t \\ t^2 \\ t^3 \end{bmatrix}
\]
Monomial polynomials are the most familiar type
- Cubic case: $1, t, t^2, t^3$
Can reformulate a Bézier curve

\[
b(t) = b_0 + 3t(b_1 - b_0) + 3t^2(b_2 - 2b_1 + b_0) + t^3(b_3 - 3b_2 + 3b_1 - b_0)
\]

\[= a_0 + a_1 t + a_2 t^2 + a_3 t^3\]

Geometric interpretation of a_i and b_i different
The monomial coefficients a_i are defined as

$$\begin{bmatrix} a_0 & a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse process:

$$\begin{bmatrix} b_0 & b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

The square matrix in this equation is nonsingular

\Rightarrow Any cubic curve can be written in Bézier or monomial form