
Matrix Form for Cubic Bézier Curves

0

12 3

2

3

1 0 0 0 è øè ø
é ùé ù−3 3 0 0 é ùé ùè ø= 1ê ú é ùé ù3 −6 3 0
é ùé ù−1 3 −3 1ê ú ê ú

()u u u u

p

p
p

p

p

3
0

2
1

2
2

3
3

= 1−

+3 1−

+3 1−

+

() ()

() ()

()()

()

u u

u u

u u

u

p p

p

p

p

Bézier Tangents

Suppose we have a Bézier curve

The derivatives at the endpoints are

So in the cubic case we have:

=0

= 0 ≤ ≤1ä() ()
n

n
i i

i

u B u up p

1 0

−1

0 = −
1 = −
'() ()

'() ()n n

n

n

p p p

p p p

1 0

3 2

0 = 3 −
1 = 3 −
'() ()

'() ()

p p p

p p p

Bézier–Hermite Conversion

This gives us a direct connection to Hermite splines

Which we can write in matrix form:

0 0

3 3

0 1 0

3 3 2

=
=
= 3 −
= 3 −

Hermite Bezier

()

()

p p

p p

r p p

r p p

0 0

3 1

0 2

3 3

1 0 0 0è ø è øè ø
é ù é ùé ù0 0 0 1é ù é ùé ù=
é ù é ùé ù−3 3 0 0
é ù é ùé ù0 0 −3 3ê úê ú ê ú

p p

p p

r p

r p

Converting Between Cubic Spline Types

We saw a specific example of Bézier–Hermite conversion

Suppose we want to convert between two arbitrary splines

Given geometry matrix G1 find equivalent G2 for other spline
1 1 2 2=T Tu M G u M G

−1
2 2 1 1=G M M G

0 0

3 1

0 2

3 3

1 0 0 0è ø è øè ø
é ù é ùé ù0 0 0 1é ù é ùé ù=
é ù é ùé ù−3 3 0 0
é ù é ùé ù0 0 −3 3ê úê ú ê ú

p p

p p

r p

r p

Classifying Continuity of Curves

Parametric Continuity — Ck
• each coordinate function is differentiable k times
• and they are continuous through kth derivative

Geometric Continuity — Gk
• the curve itself is continuous up to order k
• independent of parameterization
• G0 — two segments meet at same point
• G1 — with same tangent
• G2 — and same curvature

These two kinds of continuity are not always equivalent

Exercise: Bézier Continuity

Suppose that you’re given two cubic Bézier control polygons

where the two curves p and q should be joined consecutively.

What constraints on these points are necessary to guarantee
C 1 continuity between them?

0 1 2 3

0 1 2 3

, , ,

, , ,

p p p p

q q q q

Catmull–Rom Splines

Given a set of points in space, suppose we want a spline that
• interpolates the data points [rules out Bézier]
• with C1 continuity [Hermite: lots of tweaking]

This is a common situation in animation

We start with the given set of points

define tangent , , ()n i i is0 +1 −1= −p p r p p

Catmull–Rom Splines

Typically, we pick s = ½ and we can derive a spline equation

More generally, we can use any tension parameter s

−3

−22 3

−1

0 2 0 0 è øè ø
é ùé ù−1 0 1 01 é ùé ùè ø= 1ê ú é ùé ù2 −5 4 −12
é ùé ù−1 3 −3 1ê ú ê ú

()

i

i

i

i

u u u u

p

p
p

p

p

−3

−22 3

−1

0 1 0 0 è øè ø
é ùé ù− 0 0 é ùé ùè ø= 1ê ú é ùé ù2 − 3 3− 2 −
é ùé ù− 2 − − 2ê ú ê ú

()

i

i

i

i

s s
u u u u

s s s s

s s s s

p

p
p

p

p

B-Splines

Like Catmull–Rom splines, start with sequence of points

Curves no longer interpolate control points
• points where segments actually meet are called knots
• for Hermite et al the knots were always control points

Lack of interpolation isn’t a big problem for interactive design
• but it’s hard to predict curve just based on points coordinates

, , n0p p

−3

−22 3

−1

1 4 1 0 è øè ø
é ùé ù−3 0 3 01 é ùé ùè ø= 1ê ú é ùé ù3 −6 3 06
é ùé ù−1 3 −3 1ê ú ê ú

()

i

i

i

i

u u u u

p

p
p

p

p

B-Spline Basis Functions

Non-negative functions
• implies convex hull property

()b u1 ()b u4

()b u3()b u2

()

()

()

()

()

()

()

b u u

b u u u

b u u u u

b u u

3
1

3 2
2

3 2
3

3
4

1= 1−
6
1= 3 − 6 + 4
6
1= −3 + 3 + 3 +1
6
1=
6

() () () ()i i i ib u b u b u b u1 −3 2 −2 3 −1 4+ + +p p p p

Drawing Spline Curves

Method #1 — Direct evaluation
• we have a function that generates points on the curve
• vary parameter u between 0 and 1
• substitute into formula and compute a position
• connect consecutive points with line segments

Method #1a — Direct evaluation with forward differencing
• instead of evaluating polynomials directly
• incrementalize polynomial to cut down on multiplies

This approach has some problems
• uniform parameter spacing is not uniform in space
• length of segments will vary over line
• control over length is important

– too long makes jagged curves; too short is too slow to draw

Bézier Curve Subdivision

Subdividing control polyline
• produces two new control polylines for each half of the curve
• defines the same curve
• all control points are closer to the curve
• this is handy for drawing

u

u

1-u

1-u

Drawing Spline Curves

Method #2 — Recursive subdivision
• starting with initial control polyline, recursively subdivide
• each subdivision produces points closer to curve
• keep doing this until the segments are good enough

– until they’re short enough (roughly constant line size)
– or curve is locally flat enough (fewer lines in straight regions)

And we only have to write this code once!
• we’ve formulated a uniform representation for splines
• all we need to know is the basis & geometry matrices

Modeling By Subdivision

Recall that we can draw spline curves via subdivision
• start with the control polyline
• recursively subdivide until “smooth enough”
• and draw the individual line segments

We can actually use this as a modeling primitive
• define the curve as limit of infinite number of subdivision steps
• throw out all our polynomials

Developing Subdivision Curves

Assume that we have some control polygon
• a closed piecewise-linear curve in the plane

Need two fundamental operations:
• Linear Subdivision — introduce new vertices
• Linear Smoothing — modify positions of vertices

Linear Subdivision of Curves

Split each edge of the curve at its barycenter (midpoint)
• thus doubling the number of vertices

iv

i+1v

()i i
1

+12 +v v

Linear Smoothing of Curves

Reposition each vertex at weighted combination of neighbors

Can also rewrite the above in a matrix form

i−1v

iv

i+1v

i i i iα α α1 −1 2 +1′ = + +v v v v

i
i

α = 1ä

[]
i

i i

i

α α α
−1

1 2 3

+1

è ø
é ù′ = é ù
é ùê ú

v

v v

v

Linear Smoothing of Curves

We are generally interested in symmetric weighting schemes

i i i i

α αα−1 +1
1− 1−å õ å õ′ = + +æ ö æ ö2 2ç ÷ ç ÷

v v v v

[]weights 1 1 1
4 2 4

Creating Smooth Curves by Subdivision

Alternately repeat subdivision & smoothing operators
• converges to some limit curve (determined by weights)

For weights [¼ ½ ¼] resulting curve is piecewise B-spline!

0 1 2 3 4

Subdivision Level

