Matrix Form for Cubic Bézier Curves

$$
\begin{aligned}
\mathbf{p}(u)= & (1-u)^{3} \mathbf{p}_{0} \\
& +3(1-u)^{2}(u) \mathbf{p}_{1} \\
& +3(1-u)(u)^{2} \mathbf{p}_{2} \\
& +(u)^{3} \mathbf{p}_{3}
\end{aligned}
$$

Bézier-Hermite Conversion

This gives us a direct connection to Hermite splines

$$
\begin{aligned}
\stackrel{\text { Hermite }}{\text { Her }} & =\text { pezer }_{\mathbf{p}_{0}} \\
\mathbf{p}_{3} & =\mathbf{p}_{3} \\
\mathbf{r}_{0} & =3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \\
\mathbf{r}_{3} & =3\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)
\end{aligned}
$$

Which we can write in matrix form:

$$
\begin{aligned}
& { }^{\mathrm{a}} \mathbf{p}_{0}{ }^{\circ} \text { a } 1 \quad 0 \quad 0 \quad 0{ }^{\mathrm{o}} \underline{\underline{a}}_{0}{ }^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

Bézier Tangents

Suppose we have a Bézier curve

$$
\mathbf{p}(u)=\left.\right|_{i=0} ^{n} \mathbf{p}_{i} B_{i}^{n}(u) \quad 0 \leq u \leq 1
$$

The derivatives at the endpoints are

$$
\begin{aligned}
\mathbf{p}^{\prime}(0) & =n\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \\
\mathbf{p}^{\prime}(1) & =n\left(\mathbf{p}_{n}-\mathbf{p}_{n-1}\right)
\end{aligned}
$$

So in the cubic case we have:

$$
\begin{aligned}
\mathbf{p}^{\prime}(0) & =3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \\
\mathbf{p}^{\prime}(1) & =3\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)
\end{aligned}
$$

Converting Between Cubic Spline Types

We saw a specific example of Bézier-Hermite conversion

$$
\begin{aligned}
& \text { 《 } \mathbf{r}_{0} » \lll 3 \text { 3 } 00
\end{aligned}
$$

Suppose we want to convert between two arbitrary splines
$\mathbf{u}^{\top} \mathbf{M}_{1} \mathbf{G}_{1}=\mathbf{u}^{\top} \mathbf{M}_{2} \mathbf{G}_{2}$
Given geometry matrix G_{1} find equivalent G_{2} for other spline
$\mathbf{G}_{2}=\mathbf{M}_{2}{ }^{-1} \mathbf{M}_{1} \mathbf{G}_{1}$

Classifying Continuity of Curves

Parametric Continuity - \boldsymbol{C}^{k}

- each coordinate function is differentiable k times
- and they are continuous through $k^{\text {th }}$ derivative

Geometric Continuity - $\boldsymbol{G}^{\boldsymbol{k}}$

- the curve itself is continuous up to order k
- independent of parameterization
- G^{0} - two segments meet at same point
- G^{1} - with same tangent
- G^{2} - and same curvature

These two kinds of continuity are not always equivalent

Exercise: Bézier Continuity

Suppose that you're given two cubic Bézier control polygons
$\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$
$\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}$
where the two curves \mathbf{p} and \mathbf{q} should be joined consecutively.

What constraints on these points are necessary to guarantee C^{1} continuity between them?

Catmull-Rom Splines

Given a set of points in space, suppose we want a spline that

- interpolates the data points
[rules out Bézier]
[Hermite: lots of tweaking]
This is a common situation in animation
We start with the given set of points

$$
\mathbf{p}_{0}, \ldots, \mathbf{p}_{n} \quad \text { define tangent } \mathbf{r}_{i}=s\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right)
$$

Catmull-Rom Splines

Typically, we pick $s=1 / 2$ and we can derive a spline equation

More generally, we can use any tension parameter s

B-Splines

B-Spline Basis Functions

Like Catmull-Rom splines, start with sequence of points $\mathbf{p}_{0}, \ldots, \mathbf{p}_{n}$

Curves no longer interpolate control points

- points where segments actually meet are called knots
- for Hermite et al the knots were always control points

Lack of interpolation isn't a big problem for interactive design

- but it's hard to predict curve just based on points coordinates

Drawing Spline Curves

Method \#1 — Direct evaluation

- we have a function that generates points on the curve
- vary parameter u between 0 and 1
- substitute into formula and compute a position
- connect consecutive points with line segments

Method \#1a - Direct evaluation with forward differencing

- instead of evaluating polynomials directly
- incrementalize polynomial to cut down on multiplies

This approach has some problems

- uniform parameter spacing is not uniform in space
- length of segments will vary over line
- control over length is important
- too long makes jagged curves; too short is too slow to draw

Bézier Curve Subdivision

Subdividing control polyline

- produces two new control polylines for each half of the curve
- defines the same curve
- all control points are closer to the curve
- this is handy for drawing

Drawing Spline Curves

Method \#2 - Recursive subdivision

- starting with initial control polyline, recursively subdivide
- each subdivision produces points closer to curve
- keep doing this until the segments are good enough - until they're short enough (roughly constant line size) - or curve is locally flat enough (fewer lines in straight regions)

And we only have to write this code once!

- we've formulated a uniform representation for splines
- all we need to know is the basis \& geometry matrices

Developing Subdivision Curves

Assume that we have some control polygon

- a closed piecewise-linear curve in the plane

Need two fundamental operations:

- Linear Subdivision - introduce new vertices
- Linear Smoothing — modify positions of vertices

Modeling By Subdivision

Recall that we can draw spline curves via subdivision

- start with the control polyline
- recursively subdivide until "smooth enough"
- and draw the individual line segments

We can actually use this as a modeling primitive

- define the curve as limit of infinite number of subdivision steps
- throw out all our polynomials

Linear Subdivision of Curves

Split each edge of the curve at its barycenter (midpoint)

- thus doubling the number of vertices

Linear Smoothing of Curves

Reposition each vertex at weighted combination of neighbors

$$
\begin{gathered}
\mathbf{v}_{i}^{\prime}=\alpha_{1} \mathbf{v}_{i-1}+\alpha_{2} \mathbf{v}_{i}+\alpha \mathbf{v}_{i+1} \\
\mathbf{l}_{i} \alpha_{i}=1
\end{gathered}
$$

Can also rewrite the above in a matrix form

$$
\begin{array}{r}
\mathbf{v}_{i}^{\prime}=\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3}
\end{array}\right]_{《<}^{《 \mathbf{v}_{i}} \stackrel{>}{\gg} \\
\\
\\
\\
\left\langle\mathbf{\Psi}_{i+1} \gg / 4\right.
\end{array}
$$

Linear Smoothing of Curves

We are generally interested in symmetric weighting schemes

$$
\mathbf{v}_{i}^{\prime}=\frac{\S \frac{1-\alpha}{2}}{\mathbf{i}} \cdot \mathbf{v}_{i-1}+\alpha \mathbf{v}_{i}+\frac{\S \frac{1-\alpha}{(C)}}{\mathbf{k}} \mathbf{v}_{i+1}
$$

weights $\left[\begin{array}{lll}\frac{1}{4} & \frac{1}{2} & \frac{1}{4}\end{array}\right]$

Creating Smooth Curves by Subdivision

Alternately repeat subdivision \& smoothing operators

- converges to some limit curve (determined by weights)

For weights $[1 / 41 / 21 / 4]$ resulting curve is piecewise B-spline!

0

1

2

3

4

Subdivision Level

