
Matrix Form for Cubic Bézier Curves
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Bézier Tangents

Suppose we have a Bézier curve

The derivatives at the endpoints are

So in the cubic case we have: 
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Bézier–Hermite Conversion

This gives us a direct connection to Hermite splines

Which we can write in matrix form:
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Converting Between Cubic Spline Types

We saw a specific example of Bézier–Hermite conversion

Suppose we want to convert between two arbitrary splines 

Given geometry matrix G1 find equivalent G2 for other spline
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Classifying Continuity of Curves

Parametric Continuity — Ck
• each coordinate function is differentiable k times
• and they are continuous through kth derivative

Geometric Continuity — Gk
• the curve itself is continuous up to order k
• independent of parameterization
• G0 — two segments meet at same point
• G1 — with same tangent
• G2 — and same curvature

These two kinds of continuity are not always equivalent

Exercise: Bézier Continuity

Suppose that you’re given two cubic Bézier control polygons

where the two curves p and q should be joined consecutively.

What constraints on these points are necessary to guarantee 
C 1 continuity between them?
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Catmull–Rom Splines

Given a set of points in space, suppose we want a spline that
• interpolates the data points [rules out Bézier]
• with C1 continuity [Hermite: lots of tweaking]

This is a common situation in animation

We start with the given set of points

define tangent  , , ( )n i i is0 +1 −1= −p p r p p

Catmull–Rom Splines

Typically, we pick s = ½ and we can derive a spline equation

More generally, we can use any tension parameter s
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B-Splines

Like Catmull–Rom splines, start with sequence of points

Curves no longer interpolate control points
• points where segments actually meet are called knots
• for Hermite et al the knots were always control points

Lack of interpolation isn’t a big problem for interactive design
• but it’s hard to predict curve just based on points coordinates
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B-Spline Basis Functions

Non-negative functions
• implies convex hull property
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Drawing Spline Curves

Method #1 — Direct evaluation
• we have a function that generates points on the curve
• vary parameter u between 0 and 1
• substitute into formula and compute a position
• connect consecutive points with line segments

Method #1a — Direct evaluation with forward differencing
• instead of evaluating polynomials directly
• incrementalize polynomial to cut down on multiplies

This approach has some problems
• uniform parameter spacing is not uniform in space
• length of segments will vary over line
• control over length is important

– too long makes jagged curves; too short is too slow to draw

Bézier Curve Subdivision

Subdividing control polyline
• produces two new control polylines for each half of the curve
• defines the same curve
• all control points are closer to the curve
• this is handy for drawing
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Drawing Spline Curves

Method #2 — Recursive subdivision
• starting with initial control polyline, recursively subdivide
• each subdivision produces points closer to curve
• keep doing this until the segments are good enough

– until they’re short enough (roughly constant line size)
– or curve is locally flat enough (fewer lines in straight regions)

And we only have to write this code once!
• we’ve formulated a uniform representation for splines
• all we need to know is the basis & geometry matrices

Modeling By Subdivision

Recall that we can draw spline curves via subdivision
• start with the control polyline
• recursively subdivide until “smooth enough”
• and draw the individual line segments

We can actually use this as a modeling primitive
• define the curve as limit of infinite number of subdivision steps
• throw out all our polynomials

Developing Subdivision Curves

Assume that we have some control polygon
• a closed piecewise-linear curve in the plane

Need two fundamental operations:
• Linear Subdivision — introduce new vertices
• Linear Smoothing — modify positions of vertices

Linear Subdivision of Curves

Split each edge of the curve at its barycenter (midpoint)
• thus doubling the number of vertices
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Linear Smoothing of Curves

Reposition each vertex at weighted combination of neighbors

Can also rewrite the above in a matrix form
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Linear Smoothing of Curves

We are generally interested in symmetric weighting schemes

i i i i

α αα−1 +1
1− 1−å õ å õ′ = + +æ ö æ ö2 2ç ÷ ç ÷

v v v v

[ ]weights 1 1 1
4 2 4

Creating Smooth Curves by Subdivision

Alternately repeat subdivision & smoothing operators
• converges to some limit curve (determined by weights)

For weights [¼ ½ ¼] resulting curve is piecewise B-spline!
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