Matrix Form for Cubic Bézier Curves

Bézier Tangents

pw= (1-u)p,
+3(1-u)*(uw)p,
+3(1-w)(u)’p,
+u)'p,

el 0 0 Ooéps

e ue_. u
pa=p u v wge> O CuePu
€3 6 3 Ouép,

¢ 0 0
=1 3 3 10épsg

Suppose we have a Bézier curve
pw)=apB' W) 0<u<l

i=0

The derivatives at the endpoints are
p'(0)=n(p,-p,)
p'MO=n(p,-p,.)

So in the cubic case we have:

p'(0)=3(p,-p,)
p'(D=3(p;-p,)

Bézier-Hermite Conversion

Converting Between Cubic Spline Types

This gives us a direct connection to Hermite splines

Hermite Bezier
—= —=

Po = Po
P;=Ps
r, =3(p, - p,)
r,=3(p,-p,)

Which we can write in matrix form:

¢ps ¢1 0 0 Osepyo
e_u e ue_.u
Py _g0 0 0 Lyepyy
ér,i 6-3 3 0 O0Uép,u

e u ¢ ue_ u
érsg 60 0 =3 3(ép;(

We saw a specific example of Bézier—Hermite conversion

eps el 0 0 Ogepyo

g u ¢ ué__ u
éPsg_¢0 0 0 lygpy
ér,0 é-3 3 0 Ouép,l
e u e U
§r,0 80 0 -3 30ep.|

Suppose we want to convert between two arbitrary splines
u'MG,=u'M,G,
Given geometry matrix G, find equivalent G, for other spline

G, = MZ_IMIGI

Classifying Continuity of Curves

Exercise: Bézier Continuity

Parametric Continuity — C*
+ each coordinate function is differentiable k times
« and they are continuous through k" derivative

Geometric Continuity — G*
« the curve itself is continuous up to order k
* independent of parameterization
» G% — two segments meet at same point
* G’ — with same tangent
* G2 — and same curvature

These two kinds of continuity are not always equivalent

Suppose that you’re given two cubic Bézier control polygons

pO’pl’pZ?pS
q07q17q25q3

where the two curves p and q should be joined consecutively.

What constraints on these points are necessary to guarantee
C' continuity between them?

Catmull-Rom Splines

Catmull-Rom Splines

Given a set of points in space, suppose we want a spline that
* interpolates the data points [rules out Bézier]
« with C" continuity [Hermite: lots of tweaking]

This is a common situation in animation
We start with the given set of points
Pos-- Py define tangent r, =s(p,,, - p,_,)

D
L

2 o
—_— Pz P 4 /
Pg. \E —7' .t: 7’7// V4 PG

Py Fy

Typically, we pick s =2 and we can derive a spline equation
g0 2 0 Ogep,;, ;o
é ué . u
. —1 0 1 0P,
Pa=2g u ' u'ge uePi-zy
2 €2 -5 4 -—luép,,u
é ué 1
-l 3 =3 Lugp

More generally, we can use any tension parameter s

0 1 0 0gep; ;0
é ué U
g 0 s OyePigy
€2s s-3 3-2s -sluép,,U

e ue U
€S 2-5 s-2 SQEP;

pW=§l u u* u'f

B-Splines

Like Catmull-Rom splines, start with sequence of points p,,...,p,

el 4 1 Ogép,,0

é ué

pw=~gl u @ wge. 0 el
6 €3 -6 3 Ouep,,u

é é U
-1 3 -3 14§ p: 4

Curves no longer interpolate control points
* points where segments actually meet are called knots
« for Hermite et al the knots were always control points

Lack of interpolation isn’t a big problem for interactive design
* but it’s hard to predict curve just based on points coordinates

B-Spline Basis Functions

Non-negative functions
b(Wp; ; +b,(Wp,, +b,(Wp, , +b,(Wp; « implies convex hull property

F 3
6
6
SE
6 bl(u):l(l—u)3
: |
6

b,(u) =—(3u’ -6u’ +4

R 0=)
¢ b)2 L 43
2 3(u):g(—3u +3u +3u+1)
¢ 1
Jﬁ_ b4(u)=gu3

Drawing Spline Curves

Method #1 — Direct evaluation
» we have a function that generates points on the curve
* vary parameter u between 0 and 1
* substitute into formula and compute a position
 connect consecutive points with line segments

Method #1a — Direct evaluation with forward differencing
* instead of evaluating polynomials directly
* incrementalize polynomial to cut down on multiplies

This approach has some problems
« uniform parameter spacing is not uniform in space
* length of segments will vary over line
» control over length is important
—too long makes jagged curves; too short is too slow to draw

Beézier Curve Subdivision

Subdividing control polyline
* produces two new control polylines for each half of the curve
« defines the same curve
« all control points are closer to the curve
« this is handy for drawing

Drawing Spline Curves

Method #2 — Recursive subdivision
« starting with initial control polyline, recursively subdivide
+ each subdivision produces points closer to curve
* keep doing this until the segments are good enough
—until they’re short enough (roughly constant line size)
—or curve is locally flat enough (fewer lines in straight regions)

And we only have to write this code once!

» we've formulated a uniform representation for splines
« all we need to know is the basis & geometry matrices

Modeling By Subdivision

Recall that we can draw spline curves via subdivision
« start with the control polyline

* recursively subdivide until “smooth enough”
» and draw the individual line segments
We can actually use this as a modeling primitive

« define the curve as limit of infinite number of subdivision steps
« throw out all our polynomials

G
Q

1l||l'||||’

/‘l“||||||ll|mn.........,

Developing Subdivision Curves

Assume that we have some control polygon
* a closed piecewise-linear curve in the plane

Need two fundamental operations:

* Linear Subdivision — introduce new vertices
* Linear Smoothing — modify positions of vertices

Linear Subdivision of Curves

Split each edge of the curve at its barycenter (midpoint)
* thus doubling the number of vertices

i+1

(v +v,)

Linear Smoothing of Curves

Linear Smoothing of Curves

Reposition each vertex at weighted combination of neighbors

V.
4
Vi=V TV + OV,

ao =1

V. Vi+l

Can also rewrite the above in a matrix form

eV, 0

’_ e, U
vi=log o a3]évi N
évi+1g

We are generally interested in symmetric weighting schemes

, _al-ab al-ad
Vi NN §GVia TOV; +ae—2 6 Via

/ \
\ /

\/

I[P
.

weights [+

Creating Smooth Curves by Subdivision

Alternately repeat subdivision & smoothing operators
» converges to some limit curve (determined by weights)

For weights [Y2 V4] resulting curve is piecewise B-spline!

Subdivision Level

oe

