CS 418: Interactive Computer Graphics

Clipping

Eric Shaffer

Based on slides by John Hart
Graphics Pipeline

- Model Coords → Model Xform
- World Coords → Viewing Xform
- Viewing Coords → Perspective Distortion
- Homogeneous Divide → Still Clip Coords.
- Clipping → Clip Coords.
- Window Coordinates → Window to Viewport
- Viewport Coordinates
Why Clip?

Why not just transform all triangles to the screen and just ignore pixels off the screen?

- Takes time to rasterize a triangle
- Very small number of triangles fall within the viewing frustum
- WebGL clips automatically
 - ...you don’t have to implement clipping
 - You should know how it works
Clipping Happens When?

- Different rasterization engines can make different choices
 - WebGL does it after the vertex shader runs
 - In 3D
 - Before performing division by the homogeneous coordinate
 - Could also be done in 2D, after the division

- We’ll look at a 2D clipping algorithm
 - Generalizes to 3D
Outcodes

- Cohen-Sutherland
- Assign segment endpoints a bitcode $b_3b_2b_1b_0$
 - $b_0 = x < \text{left}$
 - $b_1 = x > \text{right}$
 - $b_2 = y < \text{bottom}$
 - $b_3 = y > \text{top}$
- Let $o_0 = \text{outcode}(x_0,y_0)$, $o_1 = \text{outcode}(x_1,y_1)$
 - $o_0 = o_1 = 0$: segment visible
 - $o_0 = 0$, $o_1 \neq 0$: segment must be clipped
- Cohen-Sutherland
- Assign segment endpoints a bitcode $b_3b_2b_1b_0$
 - $b_0 = x < \text{left}$
 - $b_1 = x > \text{right}$
 - $b_2 = y < \text{bottom}$
 - $b_3 = y > \text{top}$
- Let $o_0 = \text{outcode}(x_0, y_0), o_1 = \text{outcode}(x_1, y_1)$
 - $o_0 = o_1 = 0$: segment visible
 - $o_0 = 0, o_1 \neq 0$: segment must be clipped
Cohen-Sutherland

Assign segment endpoints a bitcode

\[b_3b_2b_1b_0 \]

- \(b_0 = x < \text{left} \)
- \(b_1 = x > \text{right} \)
- \(b_2 = y < \text{bottom} \)
- \(b_3 = y > \text{top} \)

Let \(o_0 = \text{outcode}(x_0,y_0), o_1 = \text{outcode}(x_1,y_1) \)

- \(o_0 = o_1 = 0: \text{segment visible} \)
- \(o_0 = 0, o_1 \neq 0: \text{segment must be clipped} \)
- \(o_0 \& o_1 \neq 0: \text{segment can be ignored} \)
Outcodes

- Cohen-Sutherland
- Assign segment endpoints a bitcode $b_3b_2b_1b_0$
 - $b_0 = x < \text{left}$
 - $b_1 = x > \text{right}$
 - $b_2 = y < \text{bottom}$
 - $b_3 = y > \text{top}$
- Let $o_0 = \text{outcode}(x_0, y_0)$, $o_1 = \text{outcode}(x_1, y_1)$
 - $o_0 = o_1 = 0$: segment visible
 - $o_0 = 0$, $o_1 \neq 0$: segment must be clipped
 - $o_0 \& o_1 \neq 0$: segment can be ignored
 - $o_0 \& o_1 = 0$: segment might need clipping
Outcodes

- **Cohen-Sutherland**
- Assign segment endpoints a bitcode
 \[b_3b_2b_1b_0 \]
- \(b_0 = x < \text{left} \)
- \(b_1 = x > \text{right} \)
- \(b_2 = y < \text{bottom} \)
- \(b_3 = y > \text{top} \)
- Let \(o_0 = \text{outcode}(x_0,y_0), o_1 = \text{outcode}(x_1,y_1) \)
- \(o_0 = o_1 = 0: \text{segment visible} \)
- \(o_0 = 0, o_1 \neq 0: \text{segment must be clipped} \)
- \(o_0 \neq 0, o_1 = 0: \text{segment can be ignored} \)
- \(o_0 \neq 0, o_1 \neq 0: \text{segment might need clipping} \)
Parametric representation of a line segment

\[x(t) = x_0 + t (x_1 - x_0) \]
\[y(t) = y_0 + t (y_1 - y_0) \]
Parametric representation of a line segment

\[x(t) = x_0 + t (x_1 - x_0) \]
\[y(t) = y_0 + t (y_1 - y_0) \]

Plug in clipping window edge to find \(t \)

\[\text{top} = y_0 + t (y_1 - y_0) \]
\[t = (\text{top} - y_0)/(y_1 - y_0) \]
Cohen-Sutherland Clipping

\[y = \text{top} \]
\[y = \text{bottom} \]
\[x = \text{left} \]
\[x = \text{right} \]
Cohen-Sutherland Clipping

- First clip 0101
- Move \((x_0, y_0)\) to \((\text{left}, \ldots)\)
Cohen-Sutherland Clipping

- First clip 0101
- Move \((x_0, y_0)\) to \((\text{left}, \ldots)\)
- Then clip 1010
- Move \((x_1, y_1)\) to \((\text{right}, \ldots)\)
First clip 0001
Move \((x_0,y_0)\) to \((\text{left}, \ldots)\)
Then clip 0010
Move \((x_1,y_1)\) to \((\text{right}, \ldots)\)
Then clip 0100
Move \((x_0,y_0)\) again, now to \((\ldots, \text{bottom})\)
Cohen-Sutherland Clipping

- First clip 0101
 - Move \((x_0, y_0)\) to \((\text{left}, \ldots)\)
- Then clip 1010
 - Move \((x_1, y_1)\) to \((\text{right}, \ldots)\)
- Then clip 0100
 - Move \((x_0, y_0)\) again, now to \((\ldots, \text{bottom})\)
- Finally clip 1000
 - Move \((x_1, y_1)\) again, now to \((\ldots, \text{top})\)
Polygon Clipping

- Sutherland-Hodgman
- Polygon ABC
Polygon Clipping

- Sutherland-Hodgman
- Polygon ABC
- Clip left: A_1BCA_2
Polygon Clipping

- Sutherland-Hodgman
- Polygon ABC
- Clip left: $A_1 BCA_2$
- Clip right: $A_1 B_1 B_2 CA_2$
Polygons Clipping

- Sutherland-Hodgman
- Polygon ABC
- Clip left: $A_1B_1CA_2$
- Clip right: $A_1B_1B_2CA_2$
- Clip bottom: $A_1'B_1'B_2CA_2$
Polygon Clipping

- Sutherland-Hodgman
- Polygon ABC
- Clip left: $A_1B_1C_2A_2$
- Clip right: $A_1B_1B_2C_2A_2$
- Clip bottom: $A_1B_1'B_2'C_2A_2$
- Clip top: $A_1B_1'B_2'C_1C_2A_2$
Concave Clipping

- Sutherland-Hodgman
- Clip segments even if they are trivially rejectible (rejectionable?)
- Outputs a single polygon that appears as multiple polygons
- Reversed edges don’t get filled
Clipping in 3D

- Clipping can be done in 3D clip coordinates
- Need to be able to compute
 - Which side of a plane a point is on
 - Line segment – Plane intersections
- Can still use Cohen-Sutherland
 - 6-bit outcodes
 - 27 different regions of space
Clipping in 3-D

- Need to keep depth (z-coordinate) of geometry for visible surface detection
- Generalize oriented screen edge to oriented clipping plane $C = (A,B,C,D)$
- Then any homogeneous point $P = (x,y,z,w)^T$ classified as
 - “on” if $C \cdot P = 0$
 - “in” if $C \cdot P < 0$
 - “out” if $C \cdot P > 0$

$$Ax + By + Cz + D = 0$$

$$wAx + wBy + wCz + wD = 0$$
Clipping in 3D

- Plane equation can be rewritten $n \cdot (p - p_0) = 0$
 - n the normal and p_0 is a point on the plane
 - plane is formed by all points p for which equation is true
- For a line defined by points p_1 and p_2
 - parametric equation is $p(t) = (1 - t)p_1 + tp_2$
- You can find the intersection of a plane and line:
 $$t = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}$$
Clipping in WebGL

- Clipping happens after the vertices leave the vertex shader
 - But before the homogeneous divide
- Everything outside the [-1,+1] cube is discarded or clipped
 - Axis-aligned clipping planes
 - Inside-outside test simpler
 - e.g. is z coordinate > 1?
- Quick review
 - What plane is the projection plane?
Everything is orthographically projected to $z=0$ plane

Remember – the viewing transformation and projection transformation move the geometry you want to see into the WebGL view volume

The eyepoint in the view volume image below is not meaningful

- Things “behind” the eye will be visible