Tile Rasterization

CS418 Computer Graphics
John C. Hart
Triangle Rasterization

- Modern GPU’s optimize triangles
 - Simplicial – least information for planar facet
 - Convex
- Modern GPU’s often tile based
 - Spatial coherence
 - Memory coherence
- Modern GPU’s parallel
 - Determine pixels independently
 - Determine pixels simultaneously
Who Needs Clipping?

• Useful to cull (e.g. via Cohen-Sutherland outcodes) triangles that lie completely off the display viewport

• Don’t need to specifically clip triangles (e.g. via Liang-Barsky parametric clipping) that lie partially on and partially off the display viewport
Which Tiles in Triangle

- Rasterize the tiles using e.g. a scan line algorithm on the tiles instead of the pixels
- Conservative rasterization: include any tile that contains any portion of triangle
Line Equation

- Explicit Line Equation

 \[y = f(x) = mx + b \]
Line Equation

- Explicit Line Equation
 \[y = f(x) = mx + b \]

- Implicit Line Equation
 \[f(x,y) = mx + b - y \]

\[f(x,y) > 0 \]
\[f(x,y) = 0 \]
\[f(x,y) < 0 \]
Line Equation

- Explicit Line Equation
 \[y = f(x) = mx + b \]
- Implicit Line Equation
 \[f(x,y) = mx + b - y \]
- But what about vertical lines?

\[m = ? \]
Line Equation

- Explicit Line Equation
 \[y = f(x) = mx + b \]
- Implicit Line Equation
 \[f(x,y) = mx + b - y \]
- But what about vertical lines?
- Implicit Line Equation
 \[f(x,y) = Ax + By + C \]
Line Equation

- Explicit Line Equation
 $$y = f(x) = mx + b$$
- Implicit Line Equation
 $$f(x,y) = mx + b - y$$
- But what about vertical lines?
- Implicit Line Equation
 $$f(x,y) = Ax + By + C$$
- Which is an Explicit Plane Equation
 $$z = f(x,y) = Ax + By + C$$
Rasterizing a Triangle

- Figure out which pixel positions lie inside the triangle
Rasterizing a Triangle

- Figure out which pixel positions lie inside the triangle
Rasterizing a Triangle

- Figure out which pixel positions lie inside the triangle
- Figure out which pixel positions lie on the positive side of each of three line equations
Rasterizing a Triangle

- Figure out which pixel positions lie inside the triangle
- Figure out which pixel positions lie on the positive side of each of three line equations
Rasterizing a Triangle

• Figure out which pixel positions lie inside the triangle
• Figure out which pixel positions lie on the positive side of each of three line equations
 \[f(x, y) = Ax + By + C \]
Rasterizing a Triangle

- Figure out which pixel positions lie inside the triangle
- Figure out which pixel positions lie on the positive side of each of three line equations

\[f(x, y) = 4x + 2y - 9 \]
Tile Test

• Does tile contain edge?
• Just check corners
 – If all corners outside then tile is empty
 – If all corners inside then tile is inside
 – Otherwise edge passes through tile
• Perform for all three edges