Arbitrary Axis Rotations with Vector Algebra

CS418 Computer Graphics
John C. Hart
Vector Algebra

- Forget homogenous coordinates for the moment
- Simple vectors, e.g. \(\mathbf{a} = (a_x, a_y, a_z) \), \(\mathbf{b} = (b_x, b_y, b_z) \)
• Forget homogenous coordinates for the moment
• Simple vectors, e.g. \(\mathbf{a} = (a_x, a_y, a_z), \mathbf{b} = (b_x, b_y, b_z) \)
• Length: \(||\mathbf{a}|| = \sqrt{a_x^2 + a_y^2 + a_z^2} \)
• Normalizing a vector \((\mathbf{a}/||\mathbf{a}||) \) makes it unit length
Vector Algebra

- Forget homogenous coordinates for the moment
- Simple vectors, e.g. \(\mathbf{a} = (a_x, a_y, a_z) \), \(\mathbf{b} = (b_x, b_y, b_z) \)
- Length: \(\| \mathbf{a} \| = \sqrt{a_x^2 + a_y^2 + a_z^2} \)
- Normalizing a vector (\(\mathbf{a}/\| \mathbf{a} \| \)) makes it unit length
- Dot product
 \[
 \mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z \\
 = \| \mathbf{a} \| \| \mathbf{b} \| \cos \theta \\
 \mathbf{a} \cdot \mathbf{a} = \| \mathbf{a} \|^2
 \]
Vector Algebra

- Forget homogenous coordinates for the moment
- Simple vectors, e.g. \(\mathbf{a} = (a_x, a_y, a_z) \), \(\mathbf{b} = (b_x, b_y, b_z) \)
- Length: \(\| \mathbf{a} \| = \sqrt{a_x^2 + a_y^2 + a_z^2} \)
- Normalizing a vector \((\mathbf{a}/\| \mathbf{a} \|) \) makes it unit length
- Dot product
 \[
 \mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z \\
 = \| \mathbf{a} \| \| \mathbf{b} \| \cos \theta
 \]
 \[
 \mathbf{a} \cdot \mathbf{a} = \| \mathbf{a} \|^2
 \]
- Cross product
 \[
 \mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)
 \]
 \[
 \| \mathbf{a} \times \mathbf{b} \| = \| \mathbf{a} \| \| \mathbf{b} \| \sin \theta
 \]
Arbitrary Axis Rotation

- Rotations about x, y and z axes
- Rotation * rotation = rotation
- Can rotate about any axis direction
Arbitrary Axis Rotation

• Rotations about x, y and z axes
• Rotation \times rotation $= \text{rotation}$
• Can rotate about any axis direction
• Can do simply with vector algebra
 – Ensure $||v|| = 1$
Arbitrary Axis Rotation

- Rotations about x, y and z axes
- Rotation \(*\) rotation = rotation
- Can rotate about any axis direction
- Can do simply with vector algebra
 - Ensure \(||v|| = 1 \)
 - Let \(o = (p \cdot v)v \)
Arbitrary Axis Rotation

• Rotations about x, y and z axes
• Rotation * rotation = rotation
• Can rotate about any axis direction
• Can do simply with vector algebra
 – Ensure $||v|| = 1$
 – Let $o = (p \cdot v)v$
 – Let $a = p - o$
Arbitrary Axis Rotation

- Rotations about x, y and z axes
- Rotation * rotation = rotation
- Can rotate about any axis direction
- Can do simply with vector algebra
 - Ensure $||v|| = 1$
 - Let $o = (p \cdot v)v$
 - Let $a = p - o$
 - Let $b = v \times a$, (note that $||b|| = ||a||$)
Arbitrary Axis Rotation

- Rotations about x, y and z axes
- Rotation * rotation = rotation
- Can rotate about any axis direction
- Can do simply with vector algebra
 - Ensure \(|v| = 1\)
 - Let \(o = (p \cdot v)v\)
 - Let \(a = p - o\)
 - Let \(b = v \times a\), (note that \(|b| = |a|\))
 - Then \(p' = o + a \cos q + b \sin q\)
Arbitrary Axis Rotation

- Rotations about x, y and z axes
- Rotation \(\times \) rotation = rotation
- Can rotate about any axis direction
- Can do simply with vector algebra
 - Ensure \(||v|| = 1 \)
 - Let \(o = (p \cdot v)v \)
 - Let \(a = p - o \)
 - Let \(b = v \times a \), (note that \(||b||=||a|| \))
 - Then \(p' = o + a \cos q + b \sin q \)
- Simple solution to rotate a single point
- Difficult to generate a rotation matrix to rotate all vertices in a meshed model