Chapter 7

Modeling Transformations

Chapter 4 showed that meshed objects are stored in a format that includes
a list of vertex positions. These vertex positions are expressed in a coordi-
nate system, but an individual model has no knowledge of its location or
orientation in a scene, nor the units used for that scene. Hence the vertex
positions of a mesh model are stored in a coordinate system designed for
that model, called model coordinates.

In model coordinates, a meshed object is typically centered around the
origin, aligned along the axes, and often extends about a unit in each
direction. A scene will contain many different objects, and uses world
coordinates to create a single coordinate system for the entire scene. If we
loaded all of the objects using their model coodinates, they would just pile
on top of each other, as shown on p. 56.

Modeling transformations convert mesh vertices from their stored model
coordinate system to the global coordinates used as a a single consistent
coordinate system to combine all of the models into a scene. Let A be the
current modeling transformation. Then each vertex v; is stored in model
coordinates, and we transform its position Av; to its position, orientation
and scale in the scene in world coordinates.

Modeling transformations are applied first in vertex pipeline, operating
on model vertices in their stored coordinate system. When we write a pro-
gram to build the vertex pipeline, each transformation we specify is multi-
plied on the right of the current transformation. Transformations specified
earlier in a program are applied to vertices later, and transformations spec-
ified later are applied earlier. Modeling transformations are specified last,
just before the commands that send vertices down the graphics pipeline,
and so these modeling transformations act on the vertices first.

Since each model is stored in its own model coordinate system, we
will need a different model transformation matrix for each model. We
do not want to rebuild a vertex transformation pipeline from scratch for
each new model, so we need a way to save and restore the vertex trans-
formation pipeline so we can adjust it to properly transform each model.
The command pushmatrix pushes a copy of the current vertex pipeline
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transformation matrix onto a matrix stack. It does not change the current
vertex pipeline transformation matrix. The command popmatrix removes
the most recently added matrix from the matrix stack and uses it to replace
the current vertex pipeline transformation matrix.

The commands leading up to the modeling transformations will con-
struct a vertex pipeline that converts from world coordinates to viewport
coordinates. This pipeline will convert the position of vertices in the scene
to the position of pixels on the screen. Let M be the transformation ma-
trix that performs this scene-to-screen transformation. Say we have three
models, say A, B and C, and let A, B and C be their corresponding model
transformation matrices, such that Av; transforms model A’s vertex v;
from A’s model coordinate system into scene coordinates. Then the fol-
lowing program would properly transform the three models for display.

<construct scene-to-screen vertex pipeline>
pushmatrix

apply matrix A

load model A
popmatrix
pushmatrix

apply matrix B

load model B
popmatrix
pushmatrix

apply matrix C

load model C
popmatrix

The first line indicates that we have constructes a current transforma-
tion matrix, we can denote it M, that converts vertices from the world
coordinates of the scene to the viewport coordinates of the pixels on the
screen. The first pushmatrix command stores a copy of M on the ma-
trix stack. Then the next line apply matrix A will replace the current
transformation M with the product M A, such that vertices are trans-
formed directly from A’s model coordinates to viewport coordinates. The
popmatrix command then takes the most recent matrix from the matrix
stack (M) and replaces the current transformation (M A) with it. Hence,
the popmatrix command restores the current transformation matrix to its
state before the previous pushmatrix command.

7.1 Change of Coordinates

There are two ways to look at these transformations. The first way to look
at a transformation is by the effect it has on a shape. For example, a two-
dimensional non-uniform scale by (1,2) stretches a shape by a factor of two
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in the vertical direction, by doubling the y coordinates of the subseqgent
vertices. Shapes that appear before the transformation are not stretched
whereas shapes that appear after it are. Hence the extrinsic effect of the
transformation is to change the shape.

A second way to apply a transformation is to leave the shape un-
changed, but alter the coordinate system it is embedded into. In this
intrinsic view, the scale by factor (1,2) would create a new coordinate sys-
tem with new units where the vertical y axis units was half the extent of
the horizontal x axis.

Extrinsic Intrinsic

scale 1,2
box orange

Figure 7.1: The extrinsic view of the scale command is that it transforms
the shape and places the result in a global coordinate system. The intrinsic
view of the scale command is that the it applies the inverse transformation
to the coordinate system, and an undistorted shape is drawn into it.

Figure 7.1 demonstrates this difference by applying the scale to a box.
The statement box orange creates a box extending from (—1,—1) to (1, 1),
filled with the color orange. The statement scale 1,2 creates a scale trans-
formation matrix that is applied to the vertices. The scaled box always
extends from (—2,—1) to (2,1). In the extrinsic view, the transformation
moves the vertices from their original positions to new positions in the
same coordinate system. In the intrinsic view, the vertices remain in the
same effective position, but the coordinate system as changed.

The intrinsic view is often called a change of coordinates. One familiar
way to view a change of coordinates is as a change of units. Suppose an
object is modeled in terms in imperial units, measured in inches, but is
placed in a scene that uses metric units, measured in centimeters. If one
wanted to read the scene in inches but display it in centimeters, then the
model matrix would need to first apply a uniform scale by a factor of 2.2
(centimers per inch) to convert the coordinates from inches to centimeters.
In the intrinsic view, we have just changed the coordinate system from
inches to centimeters by scaling the grid by a factor of 1/2.2, whereas in
the extrinsic view, we have enlarged the shape by a factor of 2.2.
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As demonstrated by these examples, the transformation applied to the
coordinate system (e.g. the grid) in the intrinsic view is the inverse of the
transformation applied to the vertices in the extrinsic view. In computa-
tional reality, the transformation is always applied to the vertices, and the
intrinsic view is just a way of mentally reasoning about the result.

7.2 Example: Building a Robot

We can demonstrate hierarchical coordinate systems and transformations
by building a robot. The robot will consist of a body, an upper arm and a
forearm. The upper arm will attach to the body with a shoulder joint, and
the forearm will attach to the upper arm with an elbow joint. To keep this
first example simple, we’ll do this in two dimensions, so the body and arm
segments will be rectangles, and the joint configurations will be specified
by ordinary rotation angles.

First we need to create the body, as shown in plate Robot-1 on p. 60.
The “box” command will create a box, which in 2-D is just a square from (-
1,-1) to (1,1). We want the robot’s torso to be four units tall and two units
wide, so we need to stretch this box by a factor of two in the vertical direc-
tion. We implement this by setting up a scaling transformation to apply to
the vertices when they are sent down the vertex pipeline. The graphics pro-
gram in Robot-2 executes the scale 1,2 command first, which multiplies
a scale matrix on the right side of the current transformation, and replaces
the current transformation with that product. Then the scale transforma-
tion will be applied first to the vertices, followed by the remainder of the
vertex pipeline transformations.

We similarly create the upper arm in Robot-3. We want an upper
arm that is two units tall by half a unit wide. We will create a box from
(-1,-1) to (1,1) using the box brown command, and will scale it to the
appropriate size. We apply this scale by preceding the box command with
a scale .25 1 command which shrinks the box by a factor of one-fourth
horizontally.

Before we attach the arm to the robot torso, we need to set up its
shoulder rotation. Our rotate command generates a rotation matrix about
the origin, so before we rotate the upper arm, we need to move the shoulder
to the origin, as shown in Robot-4. Our scaled box is centered at the
origin with its shoulder at (0, 1). We move the shoulder to the origin with
a translate 0,-1 command, which translates the entire upper arm one
unit down.

The command rotate shoulder_angle in Robot-5 on p. 61 now ro-
tates the upper arm about the shoulder, because the shoulder is positioned
at the origin. Notice that the rotation command appears before the tran-
lation and scale commands that shape and maneuver the upper arm into
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place so its shoulder is at the origin, which means the rotation is applied
after the shoulder has been positioned at the origin.

We can now attach the rotated upper arm to the upper right corner of
the robot torso. We want to position the shoulder in the robot’s coordinate
system at (1.25,2) to give the half-unit wide upper arm room to rotate
without overlapping the torso. Hence Robot-6 moves the upper arm using
the command translate 1.25,2 specified before the shoulder rotation
command so it is appled afterwards.

We can now specify any shoulder angle and re-run the program. The
new shoulder angle will change the rotation matrix, yielding a new com-
posite matrix for the upper arm. The result will be an upper arm rectangle
that rotates about its top center point located at (1.25,1), but the robot’s
torso is missing.

We can combine our commands to draw the torso and the upper arm,
but both sets of commands change the vertex pipeline transformation ma-
trix. For example, if we draw the body first, then the scale 1,2 transfor-
mation would be applied to all the vertices specified after it, including the
upper arm vertices. Plate Robot-7 fixes this by performing the pushmatrix
command before we draw the body, and the popmatrix command after we
draw the body but before we draw the upper arm. By saving a copy of
the current transformation matrix before we draw the body, and restor-
ing the transformation matrix immediately afterward, the transformations
used to shape the body are forgotten and the upper arm is constructed in
the original coordinate system.

Plate Robot-8 on p. 63 constructs the gray forearm in the same shape
and position as the brown upper arm, as a one-half by two unit rectangle
positioned so its top-center point is at the origin. This top-center point
will be the elbow, so we rotate by the elbow angle (negated since we want
a clockwise rotation).

If we just move the rotated forearm to the end of the upper arm in the
robot’s coordinate system, then rotating the upper arm about the shoulder
would separate it from the forearm. We can’t automatically know where
the end of the upper arm is in order to translate the forearm’s elbow joint
there. Instead we place the forearm at the end of the upper arm in the
upper arm’s coordinate system.

Recall that the upper arm was placed in a coordinate system where the
shoulder lied at the origin and the upper arm extended two units below
it. In this upper arm coordinate system shown in Robot-9, we place the
forearm at the end of the upper arm by translating it two units down. This
moves the forearm’s elbow, which was at the origin, to the bottom of the
upper arm, precisely at (0, —2) in the arm coordinate system.

If we change the elbow angle, then the forearm rotates about the origin
in the forearm coordinate system. But when it is translated two units down
to be placed in the upper arm’s coordinate system, changing the elbow
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angle now causes a rotation of the forearm about the point (0, —2). Note
that the shoulder angle rotation continues to rotate everything specified
after it, which includes the upper arm and the forearm, even if the forearm
has itself been rotated about the elbow.

Note also that Robot-9 encloses the transformations that shape and
position the upper arm with a pushmatrix, popmatrix pair, so they don’t
affect the transformations that shape and position the forearm and rotate
it about the elbow.

Now the same translate 1.25,2 command that attached the upper
arm to the robot body now brings the forearm with it. Changing the
shoulder angle results in a rotation of the upper arm and forearm about
the shoulder point (1.25,2), whereas changing the elbow angle rotates only
the forearm about a point at the end of the upper arm.

Finally, Robot-10 positions the arm coordinate system with respect to
the robot coordinate system containing the body. Commands that appear
before the commands in this plate affect the entire robot and operate in
the robot coordinate system shown in Robot-10. Commands that appear
just after the shoulder rotation affect the entire arm assembly of the robot
in the upper-arm’s coordinate system shown in Robot-9. Commands that
appear just after the elbow rotation only affect the forearm and operate
in the forearm’s coordinate system shown in Robot-8. Hence these three
coordinate systems: robot, upper arm and forearm, form a hierarchy.

How to Read the Robot Program

Each transformation creates a new coordinate system, and so each transfor-
mation affects the commands that come after it, up to the next popmatrix
command, if there is one. While the computer executes a graphics program
from top to bottom, it is easier to understand a graphics program if we
read it from bottom to top.

Reading the robot program on p. 65 this way from bottom to top, we
create a gray box scaled into a thin rectangle and moved down so its top-
center elbow point lies at the origin. We then apply the elbow rotation
and move the rotated forearm two units down so it can be placed at the
end of the upper arm we are about to construct.

We then construct the upper arm as a box scaled into a thin rectangle
moved down so its top-center shoulder point is at the origin, enclosed in
a push/popmatrix pair so the shaping and positioning of the box into an
upper arm don’t affect the forearm. Now the shoulder rotation rotates the
upper arm and the elbow rotated lower arm at its end about the origin
which coincides with its shoulder point.

We translate this rotated arm assembly to the upper right corner of the
robot’s body we are about to build. Finally, we build the robot’s body as
a box stretched vertically, and surrounded by a push/popmatrix pair to
prevent the stretch from affecting the construction of the arm assembly.
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Figure 7.2: The earth local
coordinate system.
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7.3 Example: Modeling the Earth

We can further illustrate hierarchical coordinate systemg by modeling the
solar system. The earth spins on a tilted axis, orbitted by a spinning moon
while it travels around the sun, which itself is orbitted by seven (or eight)
other planets, several of which are orbitted by one or more spinning moons.
Each of these elements can be modeled in a local coordinate system. These
coordinate systems organize into a hierarchy, so the moon is dragged by
the earth as it orbits the sun.

Before we start, we should understand that this is a model of the so-
lar system, and so contains many simplifications. This is a hierarchical
model, as opposed to a dynamical system governed by gravity (which we
could model using techniques from the later motion chapters of this book).
Our orbits are circular and planets and moons are spherical, all using aver-
aged radii. Furthermore, some geometric details are left out, or as a later
exercise, such as the orbiting plane and tilted axis of the moon.

We begin by modeling the earth. We start with an earth-cenetered
coordinate system as shown in Fig. 7.2 and plate Earth-1, where the z-axis
points north and the x-axis extends through the intersection of the equator
(0° latitude) and the prime (Greenwich) meridian (0° longitude), just off
the coast of Africa. This is a right-handed coordinate system so the y-axis
comes out of the Indian Ocean.

We model the globe of the earth as a perfect sphere, using spherical
coordinates parameterized by latitude and longitude

s = Llautitude,
180°
t = ﬁlongitude. (7.1)

As latitude ranges from —90° (south pole) to 90° (north pole), s ranges
from —m/2 to 7/2 radians, and as longitude ranges from —180° (west)
to 180° (east), t € [—m, pi]. The parameters s,t are spherical coordinates,
which we convert to Euclidean z,y, 2 coordinates with the formula

r = cos(s)cos(t),
= cos(s)sin(t),

z = sin(s). (7.2)

We can make a mesh from points on this sphere by enumerating values
of s and t across the globe. To sample n longitude points along a latitude,
we would vary t from —pi to pi — At in units of At = 27/n. We'd similarly
sample m latitude points along a longitude for s varying from —7/2 to
7/2—As in units of As = m/m. We then get the positions of four vertices of
a quad by applying (7.2) to (s,t), (s,t+At), (s+As,t+At) and (s+As, t).
(Since this quad is non-planar, it is better drawn as a triangle fan.)
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We can also draw the continents on the globe. Geographical data is
available from a variety of sources. Outline data for the continents is
available at:

http://www.ngdc.noaa.gov/mgg/coast

as a text file of latitude/longitude coordinates. Plotting the coastline data
in 2-D using x = t and y = s produces an atlas of the earth as shown
in the upper right corner of Plate Earth-1. These coordinates can be
plotted as polylines or filled (concave) polygons on the globe after the
coordinates are converted by (7.1) and (7.2). The result is shown in the
lower right of Plate Earth-1. Subsequent plates refer to this procedure
by the draw earth command, which creates a unit sphere and draws the
continents on its surface.

We'll assume the earth is spherical, and scale our sphere to the earth’s
mean diameter of 12,742 km, as shown in Plate Earth-2. Then we rotate
the earth about its axis (the z-axis in our earth coordinate system) with
a rotation. The angle of rotation is given as "tod,” short for time-of-day.
System time functions return time in seconds from a specific reference
time. The earth rotates once every 23 hours, 56 minutes and 4 seconds
relative to the stars. The current orientation of the earth is given by the
fractional part of the current time (in seconds) divided by 86,164 seconds
per rotation, multiplied by 360°, and added to the orientation of the earth
at the reference time (say tody).

As we all learn in elemenary school, the earth rotates on a tilted axis,
giving us seasons. We tilt the earth’s axis (its z axis in the coordinate
system we are using) with a rotation about its xz-axis. The order of the
rotations is important, since we want to spin the earth on a tilted axis,
instead of spinning a tilted earth. The time-of-day rotation is applied to
vertices first, rotating about the z-axis, then the result is tilted by 23.4°.

The earth rotates about the sun as it spins on its tilted axes. We'll
assume it follows a circular path even though it doesn’t. As illustrated in
Plate Earth-3, we’ll need to set up a new sun-centered coordinate system,
whose origin is now in the middle of the sun at the center of the solar
system. First we move the earth one astronomical unit (149,587,871 km)
away from the sun. (Things in space are few and quite far between, so an
actual display would want to shorten this distance so one could actually
see the sun and earth.) This translation converts the coordinate system
from earth-centered to sun-centered.

Now the earth can orbit the sun with a rotation about the sun’s z-axis.
The amount of this rotation is labeled “doy” for day-of-year. The earth
spins and orbits in a right-handed orientation (ccw when viewed from the
+2z direction). This orbit takes 365.256363 days which is one year plus
leap year, minus a day every hundred years, plus a day every 400 years, et
cetera. This comes to about 31,558,149 seconds for each orbit of the earth
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around the sun. The current angle of the orbit of the earth around the sun
is given by the fractional part of the current time in seconds divided by
the seconds per earth orbit times 350° plus the angle of the earth about
the sun at time zero, say tody, (relative to the x-axis we used to translate
from earth-centered to sun-centered coordinates).

We also need to draw the sun, shown in Plate Earth-3 as a large sphere.
We create a yellow unit sphere and scale it to a diameter of 1,391,684 km,
enclosed in a push/popmatrix pair so the scale doesn’t affect the sun-
centered coordinate system where a unit corresponds to a kilometer.

The moon orbits the earth, and follows the earth as it orbits the sun,
so a hierachy of coordinate systems will come in handy. For now, assume
the moon orbits the earth around the equator (it doesn’t), and assume
this orbit is circular (it isn’t). Hence we will have a moon-cenetered co-
ordinate system orbiting an earth-centered coordinate system orbiting a
sun-centered coordinate system.

Plate Earth-4 draws a moon as a white unit sphere at the origin of the
moon-centered coordinate system. This sphere is scaled to a diameter of
3,474 km and translated away from the center of the earth’s coordinate
system by a distance of 385,000 km along the earth’s z-axis.

The moon orbits the earth roughly once a month, about once every
27.3 days, or 13.37 times per year. Hence we can simulate this orbit with
a rotation about the earth’s z axis by an angle of 13.37 doy. (For now we
orbit the tilted earth about its equator, but the actual orbiting plane is
offset by about 5° from the plane the earth follows as it orbits the sun.)
The moon is tidally locked so the same side always faces the earth. Thus
the moon rotates about its z axis by the opposite amount, —13.37 doy.
Hence the moon orbits the earth ccw but spins cw. The moons orbit is
right handed, but its spin is left-handed. (The actual axis that of the
moon’s spin is tilted by 6.7°, but we ignore that for now.)

The moon is drawn, scaled and spun, then moved and rotated into its
current position in earth orbit, all within a push/popmatrix pair. Hence,
the code for the moon is inserted without affecting the earth code or any-
thing else. This moon code is inserted after the rotation that tilts the
earth’s axis. Hence the moon is inserted into the earth’s untilted coordi-
nate system and orbits the earth at its equator. Placing the code before
this tilt rotation would cause the moon to orbit the earth in the plane that
the earth orbits the sun.

The result is a moon orbitting an earth orbitting the sun. We use
hiearchical coordinate systems and push/popmatrix commands to branch
off of the hierarchy. We can broaden this hierarchy by adding other planets,
and planets like Jupiter with several moons. We can deepen the hierarchy
by adding a lunar orbiter, or by following the sun’s motion through the
galaxy and dragging the rest of the planets and their moons with it.





