CS411
Database Systems

13: Logging and Recovery

Kazuhiro Minami

Outline

 Transaction
» Atomicity
— Concurrency control
— Recovery
 Logging
- Redo
- Undo
— Redo/undo

Users and DB Programs

e End users don't see the DB directly
— are only vaguely aware of its design
— may be acutely aware of part of its contents
— SQL is not a suitable end-user interface
» Asingle SQL query is not a sufficient unit of DB
work
— May need more than one query

— May need to check constraints not enforced by the
DBMS

— May need to do calculations, realize “business rules”,
etc.

Transaction

» DB applications are designed as a set of
transactions

» Execute a number of steps in sequence
— Those steps often modify the database

» Maintain a state
— Current place in the transaction’s code being executed
— Local variables

» Typical transaction

— starts with data from user or from another transaction
— includes DB reads/writes

— ends with display of data or form, or with request to
start another transaction

Atomicity

 Transactions must be "atomic"
— Their effect is all or none
— DB must be consistent before and after the
transaction executes (not necessarily during!)
e EITHER
— atransaction executes fully and "commits" to
all the changes it makes to the DB

— OR it must be as though that transaction never
executed at all

Requirements for Atomicity

* Recovery

— Prevent a transaction from causing inconsistent
database state in the middle of its process

« Concurrency control

— Control interactions of multiple concurrent
transactions

— Prevent multiple transactions to access the same
record at the same time

A Typical Transaction

 User view: “Transfer money from savings
to checking”

» Program: Read savings; verify balance is
adequate *, update savings balance and
rewrite *™; read checking; update checking
balance and rewrite***,

*DB still consistent

**DB inconsistent

***DB consistent again

"Commit" and "Abort"

« A transactions which only READs expects
DB to be consistent, and cannot cause it to
become otherwise.

* When a transaction which does any WRITE
finishes, it must either
— COMMIT: "I'm done and the DB is consistent

again" OR
— ABORT: "I'm done but | goofed: my changes
must be undone."

System failures

» Problems that cause the state of a transaction to be
lost

— Software errors, power loss, etc.
 The steps of a transaction initially occur in main
memory, which is “volatile”

— A power failure will cause the content of main memory
to disappear

— A software error may overwrite part of main memory

But DB Must Not Crash

« Can't be allowed to become inconsistent
— A DB that's 1% inaccurate is 100% unusable.
* Can't lose data

* Can't become unavailable
A matter of life or death!

Can you name information processing
systems that are more error tolerant?

Solution: use a log

¢ Log all database changes in a separate, nonvolatile
log, coupled with recovery when necessary
— Undo
— Redo
— Undo/redo

« However, the mechanisms whereby such logging
can be done in a fail-safe manner are surprising
intricate

— Logs are also initially maintained in memory

Transaction Manager

« May be part of OS, a layer of middleware,
or part of the DBMS
» Main duties:

— Starts transactions
« locate and start the right program
« ensure timely, fair scheduling
— Logs their activities
« especially start/stop, writes, commits, aborts
— Detects or avoids conflicts
— Takes recovery actions

Elements

« Assumption: the database is composed of
elements
— Usually 1 element = 1 block
— Can be smaller (=1 record) or larger (=1 relation)

« Assumption: each transaction reads/writes some
elements

» A database has a state, which is a value for each
of its elements

Correctness Principle

» There exists a notion of correctness for the database
— Explicit constraints (e.g. foreign keys)
— Implicit conditions (e.g. sum of sales = sum of invoices)

» Correctness principle: if a transaction starts in a correct
database state, it ends in a correct database state

¢ Consequence: we only need to guarantee that
transactions are atomic, and the database will be correct
forever

Primitive Operations of Transactions

e INPUT(X)

— read element X to memory buffer
e READ(X,t)

— copy element X to transaction local variable t
« WRITE(X,t)

— copy transaction local variable t to element X
e OUTPUT(X)

— write element X to disk

Primitive Operations of Transactions

INPUT(X) 7 READ(X, t)

X t
— WRITE(X, t)
OUTOUT(X)

] Transaction’s
) Main memory local variable
Disk buffers

Example

READ(A 1); t := t*2;WRITE(A{)
READ(B,1); t := t*2;WRITE(B,1)

Action

t

Mem A

Mem B

Disk B

INPUT(A)

8

READ(A 1)

8

t=t*2

16

8

WRITE(A 1)

16

16

READ(B.t)

16

t=t*2

16

16

WRITE(B,t)

16

16

16

OUTPUT(A)

16

16

16

0 | 0O | 0|0 |00 ||

OUTPUT(B)

16

16

16

The Log

< An append-only file containing log records

« Note: multiple transactions run concurrently, log
records are interleaved

 After a system crash, use log to:
— Redo some transaction that committed
— Undo other transactions that didn’t commit

Undo Logging

Undo logs don’t need to save after-
Images

Log records:
e <START T>
— transaction T has begun
e <COMMIT T>
— T has committed
¢ <ABORT T>
— T has aborted
o <T X,v>
— T has updated element X, and its old value was v

Undo-Logging Rules

U1l: If T modifies X, then <T,X,v> must be written
to disk before X is written to disk

U2: If T commits, then <COMMIT T> must be
written to disk only after all changes by T are
written to disk

« Hence: OUTPUTSs are done early

Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT(A) 8 8 8 8
t=t*2 16 8 8 8
WRITE(At) 16 16 8 8 <T,A8>
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
<COMMIT T>
FLUSH LOG

Crash recovery is easy with an undo log.

1. Scan log, decide which transactions T
completed.
M <START T>....<COMMIT T>....
M <START T>...<ABORT T>.......
<SSTART T

2. Starting from the end of the log, undo all
modifications made by incomplete transactions.

The chance of crashing during recovery is
relatively high!

But undo recovery is idempotent: just restart it
if it crashes

Detailed algorithm for undo log recovery

From the last entry in the log to the first:
— <COMMIT T>: mark T as completed
— <ABORT T>: mark T as completed
— <T,X,v>: if T is not completed
then write X=v to disk
else ignore

— <START T>: ignore

Undo recovery practice

<T6,X6,v6>

Which actions do we

Scanning a year-long log is SLOW and
businesses lose money every minute their

DB is down.

undo, in which order?
What could go wrong if . . L
<T4 X4 ya> we undid them in a Solution: checkpoint the database periodically.
"\ |<START T5> different order? Easy version:
<START T4> 1.Stop accepting new transactions
<T1,X1,v1>) . .
<T5.X5,v5> 2.Wait until all current transactions complete
<T4,X4,v6> 3.Flush log to disk
<COMMIT T5> .
<T3.X3.v3> 4.Write a <CKPT>_ log record, flush
<T2,X2,v2> 5.Resume transactions
During undo This “quiescent checkpointing” isn’t
recovery, Stop |Zrexoves sther good enough for 24/7 applications.
at first o0 transactions Instead:
checkpoint. | (@l completed) 1. Write <START CKPT(TL,...,Tk)>,

ST
A= T

<START T2>
<START T3
<START T5>
<START T4>
<T1.X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

T2,T3,T4,T5

where T1,...,Tk are all active transactions

2. Continue normal operation
3. When all of T1,...,Tk have completed, write

<END CKPT>

Example of
undo recovery
with
nonquiescent
checkpointing

earlier transactions plus
T4, T5, TS5

A <START CKPT T4,
T5, T6>

Crash recovery algorithm with undo log,

nonquiescent checkpoints.

1. Scan log backwards until the start of the latest
completed checkpoint, deciding which
transactions T completed.

M <START T>....<COMMIT T>....

| M <START T>....<ABORT T>.......
T4, T5, T6,
later transagtil;s M <START CKPT {T..}>...<COMMIT T>....
What would go M <START CKPT {T...}>...<ABORT T>.......
:;‘{:jon? if we <END CKPT> <START >
idn’t use i
<END CKPT= 2 _ 2. Starting from the end of the log, undo all
later transactions modifications made by incomplete transactions.
Example
<START T1> <START T1>
<T1,A, 5> <TL1,A 5>
<START T2> <START T2>
<T2,B, 10> <T2, B, 10> i
<START CKPT(T1, T2)> <START CKPT(T1, T2)> RedO I—Ogg I ng
<T2,C, 15> <T2,C, 15>
<START T3> <START T3>
<T1, D, 20> <T1,D, 20>
<COMMIT T1> <COMMIT T1>
<T3,E, 25> <T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Redo log entries are just slightly different
from undo log entries.

<START T>
<COMMIT T>
<ABORT T>
<T, X, new_v>
— T has updated element X, and its new value is new_v

same as before

Redo logging has one rule.

R1: If T modifies X, then both <T, X, new_v> and
<COMMIT T> must be written to disk before X
is written to disk (“late OUTPUT”)

9mp6’a’f and reasonable
assumplion; @ records reach
disk in order: otherwise torvible
fﬁirg: will hppan.

Don'thave to forcs all thase
aé%a pages to sk

nammifﬁry!

Action T MemA | MemB Disk A Disk B Log
<START T>
REAT(A1) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A) 16 16 8 8 <T,A 16>
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
<COMMIT T>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Recovery is easy with an undo log.

1. Decide which transactions T completed.
M <START T>....<COMMIT T>....
M <START T>....<ABORT T>.......
<SSTART T>.iiiiiiiie e
2. Read log from the beginning, redo all updates
of committed transactions.

The chance of crashing during recovery is

relatively high!

But REDO recovery is idempotent: just restart it
if it crashes

Example of redo recovery

Which actions do we

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>

<7 <T3X4,v4>

<T1,X5,v5>

<COMMIT T2>

redo, in which order?
What could go wrong if
we redid them in a
different order?

. After that, write <END C

Nonquiescent checkpointing is trickier
with a redo log than an undo log

. Write a <START CKPT(T1,...,Tk)>

where T1,...,Tk are the active transactions

. Flush to disk all dirty data pages of transactions

committed by the time\the checkpoint started,
while continuing normalpgperation

Example of redo

i 2. Redo from
|’€COV€.ry with <START T1> :START Ttt>d
or committe
nonqmes_ce_nt . forcommit
checkpointing <COMMIT T1> To
Alldata written by™~T<START CKPT T E—
Tis known 0 be o T4, T5, T> redo for
“{Jé committed
Tns that
started after
1. Look for SEND CKPT> this point.
the last
<END CKPT <START CKPT
T9, T10> v

Example

<START T>
<T1, A, 5>

<START T2>
<COMMIT T1>

<T2, B, 10>

<START CKPT(T2)>
<T2,C, 15>
<START T3>

<T3, D, 20>

<END CKPT>
<COMMIT T2>
<COMMIT T3>

Comparison Undo/Redo

 Undo logging:
— OUTPUT must be done early
— Increase the number of disk 1/0°s
— If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, don’t need to undo)
» Redo logging
— OUTPUT must be done late
— Increase the number of buffers required by transactions

— If <COMMIT T> is not seen, T definitely has not written any
of its data to disk (hence there is not dirty data on disk)

» Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

What if an element is smaller than a block?

<T2, B, 20>
<COMMIT T1>»

<T1, A, 30>

Log file in the disk
Main memory
buffers

Q: Should we write the block to the disk?

Redo/undo logs save both before-images
and after-images.

<START T>
<COMMIT T>
<ABORT T>

<T, X, old_v, new_v>

— T has written element X; its old value was old_v, and
its new value is new_v

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must be
written to disk before X is written to disk

Note: we are free to OUTPUT early or late (l.e.
before or after <COMMIT T>)

Recovery is more complex with
undo/redo logging.

Action T MemA | MemB | Disk A Disk B Log
<START T> i
REAT(A) 8 8 8 8 1. Redo a”_ commltt(?d R <START T1>
t=t+2 16 8 8 8 tl’ta'[r;]sa(l?)tlor]s, .startlpg E <T1,X1yv1> A
WRITEAY | 16 16 8 8 <T.A8,16> at the beginning o D <START T2>
READ(B 1) 8 16 g s 8 the log o <T2, X2, v2>
: f <START T3>
o " " . . . 2. Undo aI_I |ncomplgte <T1.X3v3>
WRITE(B,t) 16 16 16 8 8 <T,B,8,16> ;ransiﬁlonsa St?ﬁ]mg <COMMIT T2>
FLUSH LOG |:)0m eendottne <T3,X4,v4> (o}
< >
OUTPUT(A) 16 16 16 16 8 9 v I S
<COMMIT T> n
OUTPUT(B) 16 16 16 16 16 T
1 1 i) are one H .
Algorithm for non-qui Cém?’?,g’m".uwﬁeﬂ Algorithm for undo/redo recovery with
checkpoint for undo/redcys s nds nonquiescent checkpoint
1. Write <start checkpoint, list of 1. Backwards undo pass (end of log to start of
all active transactions> to log R last completed checkpoint) @
2. Flush log to disk ‘?S’« [a. C=transactions that committed after the ?S:i(\e
3. Write to disk all dirty buffers, <start checkpoint started)
whether or not their transaction checkpoint, b. Undo actions of transactions that (are in A
has committed active Tns are or started after the checkpoint started) and
> e M1, T2, ..> (are not in C) ~
(this implies some log records may .)) R
need to be written to disk) on oY 2. Undo remaining actions by incomplete <start E
; ; F= oot t ti checkpoint,
4. Write <end checkpoint> to log et © ransactions |
. o es . N A=active Tns> | | D
5. Flush log to disk 29 <] a. Follow undo chains for transactions in
en) (checkpoint active list) - C (@]
checkpoint> <)
3. Forward pass (start of last completed hecknoint> S
checkpoint to end of log) CHCCKEOIY
a. Redo actions of transactions in C

Examples
what to do at

recovery time?

T1 wrote A, ...

active)
T1 wrote B, ...

checkpoint end

0 Undo T1 (undo A, B,C) |TlwroteC, ...

checkpoint start (11

no <T1 commit>

Examples

what to do at
recovery time?

0 Redo T1: (redo B, C)

T1 wrote A, ...

checkpoint start (t1
active)

T1 wrote B, ...
checkpoint end
T1 wrote C, ...

T1 commit

