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13: Logging and Recovery

Outline
• Transaction
• Atomicity

– Concurrency control
– Recovery

• Logging
– Redo
– Undo
– Redo/undo

Users and DB Programs

• End users don't see the DB directly
– are only vaguely aware of its design
– may be acutely aware of  part of its contents
– SQL is not a suitable end-user interface

• A single SQL query is not a sufficient unit of DB 
work
– May need more than one query
– May need to check constraints not enforced by the 

DBMS
– May need to do calculations, realize “business rules”, 

etc.

Transaction

• DB applications are designed as a set of 
transactions 

• Execute a number of steps in sequence
– Those steps often modify the database

• Maintain a state
– Current place in the transaction’s code being executed
– Local variables

• Typical transaction
– starts with data from user or from another transaction
– includes DB reads/writes
– ends with display of data or form, or with request to 

start another transaction



Atomicity
• Transactions must be "atomic"

– Their effect is all or none
– DB must be consistent before and after the 

transaction executes (not necessarily during!)
• EITHER

– a transaction executes fully and "commits" to 
all the changes it makes to the DB 

– OR it must be as though that transaction never 
executed at all

Requirements for Atomicity
• Recovery

– Prevent a transaction from causing inconsistent 
database state in the middle of its process

• Concurrency control
– Control interactions of multiple concurrent 

transactions
– Prevent multiple transactions to access the same 

record at the same time

A Typical Transaction
• User view: “Transfer money from savings 

to checking”
• Program: Read savings; verify balance is 

adequate *, update savings balance and 
rewrite **; read checking; update checking 
balance and rewrite***.

*DB still consistent

**DB inconsistent

***DB consistent again

"Commit" and "Abort"
• A transactions which only READs expects 

DB to be consistent, and cannot cause it to 
become otherwise.

• When a transaction which does any WRITE 
finishes, it must either
– COMMIT: "I'm done and the DB is consistent 

again" OR
– ABORT: "I'm done but I goofed: my changes 

must be undone."



System failures

• Problems that cause the state of a transaction to be 
lost
– Software errors, power loss, etc. 

• The steps of a transaction initially occur in main 
memory, which is “volatile”
– A power failure will cause the content of main memory  

to disappear
– A software error may overwrite part of main memory

But DB Must Not Crash
• Can't be allowed to become inconsistent

– A DB that's 1% inaccurate is 100% unusable.
• Can't lose data
• Can't become unavailable

A matter of life or death!

Can you name information processing 
systems that are more error tolerant?

Solution: use a log

• Log all database changes in a separate, nonvolatile 
log, coupled with recovery when necessary
– Undo
– Redo
– Undo/redo

• However, the mechanisms whereby such logging 
can be done in a fail-safe manner are surprising 
intricate 
– Logs are also initially maintained in memory

Transaction Manager 

• May be part of OS, a layer of middleware, 
or part of the DBMS

• Main duties:
– Starts transactions

• locate and start the right program
• ensure timely, fair scheduling

– Logs their activities
• especially start/stop, writes, commits, aborts

– Detects or avoids conflicts
– Takes recovery actions



Elements
• Assumption: the database is composed of 

elements
– Usually 1 element = 1 block
– Can be smaller (=1 record) or larger (=1 relation)

• Assumption: each transaction reads/writes some 
elements

• A database has a state, which is a value for each 
of its elements

Correctness Principle
• There exists a notion of correctness for the database

– Explicit constraints (e.g. foreign keys)
– Implicit conditions (e.g. sum of sales = sum of invoices)

• Correctness principle: if a transaction starts in a correct 
database state, it ends in a correct database state

• Consequence: we only need to guarantee that 
transactions are atomic, and the database will be correct 
forever

Primitive Operations of Transactions
• INPUT(X)

– read element X to memory buffer

• READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• OUTPUT(X)
– write element X to disk

Primitive Operations of Transactions

Disk
Main memory
buffers

INPUT(X)

OUTOUT(X)

X X

Transaction’s
local variable

READ(X, t)

WRITE(X, t)
t



Example
READ(A,t); t := t*2;WRITE(A,t)
READ(B,t); t := t*2;WRITE(B,t)

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

The Log
• An append-only file containing log records
• Note: multiple transactions run concurrently, log 

records are interleaved
• After a system crash, use log to:

– Redo some transaction that committed
– Undo other transactions that didn’t commit

Undo Logging

Log records:
• <START T> 

– transaction T has begun
• <COMMIT T> 

– T has committed
• <ABORT T>

– T has aborted
• <T,X,v>

– T has updated element X, and its old value was v

Undo logs don’t need to save after-
images 



Undo-Logging Rules
U1: If T modifies X, then <T,X,v> must be written 

to disk before X is written to disk
U2: If T commits, then <COMMIT T> must be 

written to disk only after all changes by T are 
written to disk

• Hence: OUTPUTs are done early

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

<COMMIT T>

FLUSH LOG

Crash recovery is easy with an undo log.
1. Scan log, decide which transactions T 

completed.
<START T>….<COMMIT T>….   
<START T>….<ABORT T>…….   
<START T>………………………

2. Starting from the end of the log, undo all 
modifications made by incomplete transactions.

The chance of crashing during recovery is 
relatively high!

But undo recovery is idempotent:  just restart it 
if it crashes.

Detailed algorithm for undo log recovery
From the last entry in the log to the first:

– <COMMIT T>:  mark T as completed
– <ABORT T>:  mark T as completed
– <T,X,v>:  if T is not completed

then write X=v to disk
else ignore

– <START T>: ignore



Undo recovery practice

…
<T6,X6,v6>
…
<T4,X4,v4>
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v6>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Which actions do we 
undo, in which order?
What could go wrong if 
we undid them in a 
different order?

Scanning a year-long log is SLOW and 
businesses lose money every minute their 

DB is down.

Solution: checkpoint the database periodically.
Easy version:
1.Stop accepting new transactions
2.Wait until all current transactions complete
3.Flush log to disk
4.Write a <CKPT> log record, flush
5.Resume transactions

During undo 
recovery, stop 

at first 
checkpoint.

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

T2,T3,T4,T5

other 
transactions

This “quiescent checkpointing” isn’t 
good enough for 24/7 applications.  

Instead:

1. Write  <START CKPT(T1,…,Tk)>,
where T1,…,Tk are all active transactions

2. Continue normal operation
3. When all of T1,…,Tk have completed, write 

<END CKPT>



Example of 
undo recovery 

with 
nonquiescent 
checkpointing

…
…
…
…

…
<START CKPT T4, 
T5, T6>
…
…
…
…
<END CKPT>
…
…
…

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T5

later transactions

What would go 
wrong if we 
didn’t use
<END CKPT> ?

What would go 
wrong if we 
didn’t use
<END CKPT> ?

Crash recovery algorithm with undo log, 
nonquiescent checkpoints.

1. Scan log backwards until the start of the latest 
completed checkpoint, deciding which 
transactions T completed.

<START T>….<COMMIT T>….   
<START T>….<ABORT T>……. 
<START CKPT {T…}>….<COMMIT T>….   
<START CKPT {T…}>….<ABORT T>……. 
<START T>………………………

2. Starting from the end of the log, undo all 
modifications made by incomplete transactions.

Example

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT(T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT(T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>

Redo Logging



Redo log entries are just slightly different 
from undo log entries.

<START T>
<COMMIT T>
<ABORT T>
<T, X, new_v> 

– T has updated element X, and its new value is new_v

same as before

Redo logging has one rule.
R1: If T modifies X, then both <T, X, new_v> and

<COMMIT T> must be written to disk before X 
is written to disk (“late OUTPUT”)

Don’t have to force all those 
dirty data pages to disk 

before committing!

Implicit and reasonable 
assumption: log records reach 

disk  in  order; otherwise terrible 
things will happen.

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Recovery is easy with an undo log.
1. Decide which transactions T completed.

<START T>….<COMMIT T>….   
<START T>….<ABORT T>…….   
<START T>………………………

2. Read log from the beginning, redo all updates 
of committed transactions.

The chance of crashing during recovery is 
relatively high!

But REDO recovery is idempotent:  just restart it 
if it crashes.



Example of redo recovery

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

Which actions do we 
redo, in which order?
What could go wrong if 
we redid them in a 
different order?

Nonquiescent checkpointing is trickier 
with a redo log than an undo log

1. Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are the active transactions

2. Flush to disk all dirty data pages of transactions 
committed by the time the checkpoint started, 
while continuing normal operation

3. After that, write <END CKPT>

dirty = written

Example of redo 
recovery with 
nonquiescent 
checkpointing

…
<START T1>
…
<COMMIT T1>
…
…
<START CKPT 
T4, T5, T6>
…
…
<END CKPT>
…
…
<START CKPT 
T9, T10>
…

1.  Look for
the last
<END CKPT>

2.  Redo from 
<START T>, 
for committed 
T in {T4, T5, 
T6}.

3.  Normal 
redo for  
committed 
Tns that 
started after 
this point.

All data written by 
T1 is known to be on 

disk

Example

<START T>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT(T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>



Comparison Undo/Redo
• Undo logging:

– OUTPUT must be done early
– Increase the number of disk I/O’s
– If <COMMIT T> is seen, T definitely has written all its data to 

disk (hence, don’t need to undo)
• Redo logging

– OUTPUT must be done late
– Increase the number of buffers required by transactions
– If <COMMIT T> is not seen, T definitely has not written any 

of its data to disk (hence there is not dirty data on disk)
• Would like more flexibility on when to OUTPUT: 

undo/redo logging (next)

What if an element is smaller than a block?

Main memory 
buffers

A
B

<T1, A, 30>
<T2, B, 20>
<COMMIT T1>

Log file in the disk

Q: Should we write the block to the disk?

Redo/undo logs save both before-images 
and after-images. 

<START T> 
<COMMIT T> 
<ABORT T>
<T, X, old_v, new_v>

– T has written element X; its old value was old_v, and 
its new value is new_v

Undo/Redo-Logging Rule
UR1: If T modifies X, then <T,X,u,v> must be 

written to disk before X is written to disk

Note: we are free to OUTPUT early or late (I.e. 
before or after <COMMIT T>)



Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Recovery is more complex with 
undo/redo logging.

1. Redo all committed 
transactions, starting 
at the beginning of 
the log

2. Undo all incomplete 
transactions, starting 
from the end of the 
log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

R
E
D
O

U
N
D
O

47

Algorithm for non-quiescent 
checkpoint for undo/redo

1. Write <start checkpoint, list of 
all active transactions> to log

2. Flush log to disk
3. Write to disk all dirty buffers, 

whether or not their transaction 
has committed
(this implies some log records may 

need to be written to disk)
4. Write <end checkpoint> to log
5. Flush log to disk

Flush dirty 

buffer pool 

pages

…

<start 
checkpoint, 
active Tns are 
T1, T2, …>
…

<end 
checkpoint>

…

Acti
ve

 

Tns

Pointers  are one of 
many tricks to speed 

up future undos

U
N
D
O

Algorithm for undo/redo recovery with 
nonquiescent checkpoint 
1. Backwards undo pass (end of log to start of 

last completed checkpoint)
a. C = transactions that committed after the 

checkpoint started
b. Undo actions of transactions that (are in A 

or started after the checkpoint started) and 
(are not in C)

2. Undo remaining actions by incomplete 
transactions
a. Follow undo chains for transactions in 

(checkpoint active list) – C 

3. Forward pass (start of last completed 
checkpoint to end of log)
a. Redo actions of transactions in C

Acti
ve

 

Tns …

<start 
checkpoint, 
A=active Tns>
…
<end 
checkpoint>

…

R
E
D
O  
S



Examples
what to do at 
recovery time?

no <T1 commit>

Undo T1  (undo A, B, C)

…
T1 wrote A, …
…
checkpoint start (T1 
active)

…
T1 wrote B, …
…
checkpoint end
…
T1 wrote C, …
…

Redo T1: (redo B, C)

…
T1 wrote A, …
…
checkpoint start (T1 
active)

…
T1 wrote B, …
…
checkpoint end
…
T1 wrote C, …
…
T1 commit

Examples
what to do at 
recovery time?


