
CS411
Database Systems

Kazuhiro Minami

13: Logging and Recovery

Outline
• Transaction
• Atomicity

– Concurrency control
– Recovery

• Logging
– Redo
– Undo
– Redo/undo

Users and DB Programs

• End users don't see the DB directly
– are only vaguely aware of its design
– may be acutely aware of part of its contents
– SQL is not a suitable end-user interface

• A single SQL query is not a sufficient unit of DB
work
– May need more than one query
– May need to check constraints not enforced by the

DBMS
– May need to do calculations, realize “business rules”,

etc.

Transaction

• DB applications are designed as a set of
transactions

• Execute a number of steps in sequence
– Those steps often modify the database

• Maintain a state
– Current place in the transaction’s code being executed
– Local variables

• Typical transaction
– starts with data from user or from another transaction
– includes DB reads/writes
– ends with display of data or form, or with request to

start another transaction

Atomicity
• Transactions must be "atomic"

– Their effect is all or none
– DB must be consistent before and after the

transaction executes (not necessarily during!)
• EITHER

– a transaction executes fully and "commits" to
all the changes it makes to the DB

– OR it must be as though that transaction never
executed at all

Requirements for Atomicity
• Recovery

– Prevent a transaction from causing inconsistent
database state in the middle of its process

• Concurrency control
– Control interactions of multiple concurrent

transactions
– Prevent multiple transactions to access the same

record at the same time

A Typical Transaction
• User view: “Transfer money from savings

to checking”
• Program: Read savings; verify balance is

adequate *, update savings balance and
rewrite **; read checking; update checking
balance and rewrite***.

*DB still consistent

**DB inconsistent

***DB consistent again

"Commit" and "Abort"
• A transactions which only READs expects

DB to be consistent, and cannot cause it to
become otherwise.

• When a transaction which does any WRITE
finishes, it must either
– COMMIT: "I'm done and the DB is consistent

again" OR
– ABORT: "I'm done but I goofed: my changes

must be undone."

System failures

• Problems that cause the state of a transaction to be
lost
– Software errors, power loss, etc.

• The steps of a transaction initially occur in main
memory, which is “volatile”
– A power failure will cause the content of main memory

to disappear
– A software error may overwrite part of main memory

But DB Must Not Crash
• Can't be allowed to become inconsistent

– A DB that's 1% inaccurate is 100% unusable.
• Can't lose data
• Can't become unavailable

A matter of life or death!

Can you name information processing
systems that are more error tolerant?

Solution: use a log

• Log all database changes in a separate, nonvolatile
log, coupled with recovery when necessary
– Undo
– Redo
– Undo/redo

• However, the mechanisms whereby such logging
can be done in a fail-safe manner are surprising
intricate
– Logs are also initially maintained in memory

Transaction Manager

• May be part of OS, a layer of middleware,
or part of the DBMS

• Main duties:
– Starts transactions

• locate and start the right program
• ensure timely, fair scheduling

– Logs their activities
• especially start/stop, writes, commits, aborts

– Detects or avoids conflicts
– Takes recovery actions

Elements
• Assumption: the database is composed of

elements
– Usually 1 element = 1 block
– Can be smaller (=1 record) or larger (=1 relation)

• Assumption: each transaction reads/writes some
elements

• A database has a state, which is a value for each
of its elements

Correctness Principle
• There exists a notion of correctness for the database

– Explicit constraints (e.g. foreign keys)
– Implicit conditions (e.g. sum of sales = sum of invoices)

• Correctness principle: if a transaction starts in a correct
database state, it ends in a correct database state

• Consequence: we only need to guarantee that
transactions are atomic, and the database will be correct
forever

Primitive Operations of Transactions
• INPUT(X)

– read element X to memory buffer

• READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• OUTPUT(X)
– write element X to disk

Primitive Operations of Transactions

Disk
Main memory
buffers

INPUT(X)

OUTOUT(X)

X X

Transaction’s
local variable

READ(X, t)

WRITE(X, t)
t

Example
READ(A,t); t := t*2;WRITE(A,t)
READ(B,t); t := t*2;WRITE(B,t)

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

The Log
• An append-only file containing log records
• Note: multiple transactions run concurrently, log

records are interleaved
• After a system crash, use log to:

– Redo some transaction that committed
– Undo other transactions that didn’t commit

Undo Logging

Log records:
• <START T>

– transaction T has begun
• <COMMIT T>

– T has committed
• <ABORT T>

– T has aborted
• <T,X,v>

– T has updated element X, and its old value was v

Undo logs don’t need to save after-
images

Undo-Logging Rules
U1: If T modifies X, then <T,X,v> must be written

to disk before X is written to disk
U2: If T commits, then <COMMIT T> must be

written to disk only after all changes by T are
written to disk

• Hence: OUTPUTs are done early

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

<COMMIT T>

FLUSH LOG

Crash recovery is easy with an undo log.
1. Scan log, decide which transactions T

completed.
<START T>….<COMMIT T>….
<START T>….<ABORT T>…….
<START T>………………………

2. Starting from the end of the log, undo all
modifications made by incomplete transactions.

The chance of crashing during recovery is
relatively high!

But undo recovery is idempotent: just restart it
if it crashes.

Detailed algorithm for undo log recovery
From the last entry in the log to the first:

– <COMMIT T>: mark T as completed
– <ABORT T>: mark T as completed
– <T,X,v>: if T is not completed

then write X=v to disk
else ignore

– <START T>: ignore

Undo recovery practice

…
<T6,X6,v6>
…
<T4,X4,v4>
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v6>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Which actions do we
undo, in which order?
What could go wrong if
we undid them in a
different order?

Scanning a year-long log is SLOW and
businesses lose money every minute their

DB is down.

Solution: checkpoint the database periodically.
Easy version:
1.Stop accepting new transactions
2.Wait until all current transactions complete
3.Flush log to disk
4.Write a <CKPT> log record, flush
5.Resume transactions

During undo
recovery, stop

at first
checkpoint.

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

T2,T3,T4,T5

other
transactions

This “quiescent checkpointing” isn’t
good enough for 24/7 applications.

Instead:

1. Write <START CKPT(T1,…,Tk)>,
where T1,…,Tk are all active transactions

2. Continue normal operation
3. When all of T1,…,Tk have completed, write

<END CKPT>

Example of
undo recovery

with
nonquiescent
checkpointing

…
…
…
…

…
<START CKPT T4,
T5, T6>
…
…
…
…
<END CKPT>
…
…
…

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T5

later transactions

What would go
wrong if we
didn’t use
<END CKPT> ?

What would go
wrong if we
didn’t use
<END CKPT> ?

Crash recovery algorithm with undo log,
nonquiescent checkpoints.

1. Scan log backwards until the start of the latest
completed checkpoint, deciding which
transactions T completed.

<START T>….<COMMIT T>….
<START T>….<ABORT T>…….
<START CKPT {T…}>….<COMMIT T>….
<START CKPT {T…}>….<ABORT T>…….
<START T>………………………

2. Starting from the end of the log, undo all
modifications made by incomplete transactions.

Example

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT(T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT(T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>

Redo Logging

Redo log entries are just slightly different
from undo log entries.

<START T>
<COMMIT T>
<ABORT T>
<T, X, new_v>

– T has updated element X, and its new value is new_v

same as before

Redo logging has one rule.
R1: If T modifies X, then both <T, X, new_v> and

<COMMIT T> must be written to disk before X
is written to disk (“late OUTPUT”)

Don’t have to force all those
dirty data pages to disk

before committing!

Implicit and reasonable
assumption: log records reach

disk in order; otherwise terrible
things will happen.

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Recovery is easy with an undo log.
1. Decide which transactions T completed.

<START T>….<COMMIT T>….
<START T>….<ABORT T>…….
<START T>………………………

2. Read log from the beginning, redo all updates
of committed transactions.

The chance of crashing during recovery is
relatively high!

But REDO recovery is idempotent: just restart it
if it crashes.

Example of redo recovery

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

Which actions do we
redo, in which order?
What could go wrong if
we redid them in a
different order?

Nonquiescent checkpointing is trickier
with a redo log than an undo log

1. Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are the active transactions

2. Flush to disk all dirty data pages of transactions
committed by the time the checkpoint started,
while continuing normal operation

3. After that, write <END CKPT>

dirty = written

Example of redo
recovery with
nonquiescent
checkpointing

…
<START T1>
…
<COMMIT T1>
…
…
<START CKPT
T4, T5, T6>
…
…
<END CKPT>
…
…
<START CKPT
T9, T10>
…

1. Look for
the last
<END CKPT>

2. Redo from
<START T>,
for committed
T in {T4, T5,
T6}.

3. Normal
redo for
committed
Tns that
started after
this point.

All data written by
T1 is known to be on

disk

Example

<START T>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT(T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Comparison Undo/Redo
• Undo logging:

– OUTPUT must be done early
– Increase the number of disk I/O’s
– If <COMMIT T> is seen, T definitely has written all its data to

disk (hence, don’t need to undo)
• Redo logging

– OUTPUT must be done late
– Increase the number of buffers required by transactions
– If <COMMIT T> is not seen, T definitely has not written any

of its data to disk (hence there is not dirty data on disk)
• Would like more flexibility on when to OUTPUT:

undo/redo logging (next)

What if an element is smaller than a block?

Main memory
buffers

A
B

<T1, A, 30>
<T2, B, 20>
<COMMIT T1>

Log file in the disk

Q: Should we write the block to the disk?

Redo/undo logs save both before-images
and after-images.

<START T>
<COMMIT T>
<ABORT T>
<T, X, old_v, new_v>

– T has written element X; its old value was old_v, and
its new value is new_v

Undo/Redo-Logging Rule
UR1: If T modifies X, then <T,X,u,v> must be

written to disk before X is written to disk

Note: we are free to OUTPUT early or late (I.e.
before or after <COMMIT T>)

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Recovery is more complex with
undo/redo logging.

1. Redo all committed
transactions, starting
at the beginning of
the log

2. Undo all incomplete
transactions, starting
from the end of the
log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

R
E
D
O

U
N
D
O

47

Algorithm for non-quiescent
checkpoint for undo/redo

1. Write <start checkpoint, list of
all active transactions> to log

2. Flush log to disk
3. Write to disk all dirty buffers,

whether or not their transaction
has committed
(this implies some log records may

need to be written to disk)
4. Write <end checkpoint> to log
5. Flush log to disk

Flush dirty

buffer pool

pages

…

<start
checkpoint,
active Tns are
T1, T2, …>
…

<end
checkpoint>

…

Acti
ve

Tns

Pointers are one of
many tricks to speed

up future undos

U
N
D
O

Algorithm for undo/redo recovery with
nonquiescent checkpoint
1. Backwards undo pass (end of log to start of

last completed checkpoint)
a. C = transactions that committed after the

checkpoint started
b. Undo actions of transactions that (are in A

or started after the checkpoint started) and
(are not in C)

2. Undo remaining actions by incomplete
transactions
a. Follow undo chains for transactions in

(checkpoint active list) – C

3. Forward pass (start of last completed
checkpoint to end of log)
a. Redo actions of transactions in C

Acti
ve

Tns …

<start
checkpoint,
A=active Tns>
…
<end
checkpoint>

…

R
E
D
O
S

Examples
what to do at
recovery time?

no <T1 commit>

Undo T1 (undo A, B, C)

…
T1 wrote A, …
…
checkpoint start (T1
active)

…
T1 wrote B, …
…
checkpoint end
…
T1 wrote C, …
…

Redo T1: (redo B, C)

…
T1 wrote A, …
…
checkpoint start (T1
active)

…
T1 wrote B, …
…
checkpoint end
…
T1 wrote C, …
…
T1 commit

Examples
what to do at
recovery time?

