CS411 Database Systems

12: Query Optimization

Kazuhiro Minami

Dynamic programming is a good (bottom-up) way to choose join ordering

Find the best plan for each subquery Q of

{**R1**, ..., **R**n}:

- 1. $\{R1\}, ..., \{Rn\}$
- $2. \ \{R1,R2\}, \{R1,R3\}, ..., \\ \{Rn\text{-}1,Rn\}$
- $3. \ \{R1, R2, R3\}, \{R1, R2, R4\},$
- 4. ...
- 5. {R1, ..., Rn}

Output:

- 1. A best plan Plan(Q)
- 2. Cost(Q)
- 3. Size(Q)

The *i*th step of the dynamic program

For each $Q \subseteq \{R1, ..., Rn\}$ of size *i* do:

- 1. For every pair Q1, Q2 such that $Q = Q1 \cup Q2$, compute $cost(Plan(Q1) \bowtie Plan(Q2))$
 - Cost(Q) = the smallest such cost
 - Plan(Q) = the corresponding plan
- 2. Compute Size(Q)

Dynamic Programming

• Return Plan({R1, ..., Rn})

Computing the Cost of a Plan Recursively

To illustrate, we will make the following simplifications:

- Cost(P1 ⋈ P2) = Cost(P1) + Cost(P2) + size(intermediate results for P1 and P2)
- Intermediate results:
 - If P1 is a join, then the size of the intermediate result is size(P1), otherwise the size is 0
 - Similarly for P2
- Cost of a scan = 0

Example

- Cost(R5 ⋈ R7)
 - = Cost(R5) + Cost(R7)
 - + intermediate results for R5 and R7
 - = 0 (no intermediate results)
- Cost((R2 \bowtie R1) \bowtie R7)
 - $= Cost(R2 \bowtie R1) + Cost(R7) + size(R2 \bowtie R1)$
 - = size(R2 \bowtie R1)

Intermediate result of $R2 \bowtie R1$

Rough Estimation of a Plan Size

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: $T(A \bowtie B) = 0.01*T(A)*T(B)$

	Subquery	Size	Lowest Cost	Plan
$\mathbf{R} \bowtie \mathbf{S} \bowtie \mathbf{T} \bowtie \mathbf{U}$	RS	100k	0	RS
Number of tuples:	RT	60k	0	RT
R = 2000	RU	20k	0	RU
S = 5000	ST	150k	0	ST
T = 3000 U = 1000	SU	50k	0	SU
U = 1000	TU	30k	0	TU
Size estimate:	RST	3M	0 + 0 + 0 + 60k	(RT)S
$size(A \bowtie B) =$	RSU	1M	20k	(RU)S
.01*size(A)*size(B)	RTU	0.6M	20k	(RU)T
	STU	1.5M	30k	(TU)S
Unrealistic!	RSTU	30M	60k+50k= 110k	(RT)(SU)

Join order options for RSTU

- Cost of (RST)U = 60K + 0 + 3M + 0
- Cost of (RSU)T = 20K + 0 + 1M + 0
- Cost of (RTU)S = 20K + 0 + .6M + 0
- Cost of (STU)R = 30K + 0 + 1.5M + 0
- Cost of (RS)(TU) = 0 + 0 + 100K + 30K
- Cost of (RT)(SU) = 0 + 0 + 60K + 50K
- Cost of (RU)(TS) = 0 + 0 + 20K + 150K

What if we don't oversimplify?

- More realistic size/cost estimations!! (next slides)
- Use heuristics to reduce the search space
 - Consider only left linear trees
 - No trees with cartesian products:

 $\mathbf{R}(\mathbf{A},\mathbf{B})$ $\mathbf{S}(\mathbf{B},\mathbf{C})$ $\mathbf{T}(\mathbf{C},\mathbf{D})$ $(\mathbf{R} \bowtie \mathbf{T}) \bowtie \mathbf{S}$ has a cartesian product

Completing a Physical Query Plan

Completing the Physical Query Plan

- Choose algorithm to implement each operator Need to consider more than I/O cost:
 - How much memory do we have ?
 - ullet Are the input operand(s) sorted ?
- Decide for each intermediate result:
 - Materialize
 - Pipeline

Example 16.36

Continuing:

- How large are the 50 buckets on y? k/50 blocks each.
- If $k \le 50$ then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join in memory
- Total cost: 3B(R) + 3B(S) + B(U) = 55,000

Example 16.36

Continuing:

- If $50 < k \le 5000$ then send the 50 buckets in Step 3 to disk
 - Each bucket has size $k/50 \le 100$, i.e., it will fit into memory
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

Example 16.36

Continuing:

- If k > 5000, then 50 blocks of memory would make each bucket of the intermediate result too big to fit into memory: materialize, use a second pass to partition the k blocks, instead of pipelining them
- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Example 16.36

Summary:

- If $k \le 50$, $\cos t = 55,000$
- If 50 < k <= 5000, cost = 75,000 + 2k
- If k > 5000, cost = 75,000 + 4k

Estimating Intermediate Result Sizes

because what algorithm you should or could use depends very strongly on the sizes of the relations

Still an area of research today

The number of tuples after selection is:

The number of tuples after a join is:

 $R \bowtie_A S$

- When the set of A values are disjoint, then $T(R\bowtie_A S) = 0$
- When A is a key in S and a foreign key in R, then $T(R \bowtie_A S) = T(R)$
- When A is a key in both R and S, then $T(R \bowtie_A S)$ = min(T(R), T(S))

Otherwise...

Some assumptions to help us guess the number of tuples resulting from a join:

<u>Containment of values</u>: if $V(R,A) \le V(S,A)$, then the set of A values of R is included in the set of A values of S (True if A is a foreign key in R, and a key in S)

Preservation of values: for any other attribute B,

 $V(R \bowtie_A S, B) = V(R, B)$ (or V(S, B))

The number of tuples after a join is...

If $V(R,A) \leq V(S,A)$

Then we expect each tuple t in R to join some tuples in S

- How many? The fraction of S that has one particular value.
- On average T(S)/V(S,A)
- On average t contributes T(S)/V(S,A) tuples to $R \bowtie_A S$

Hence $T(R \bowtie_A S) = T(R) T(S) / V(S,A)$

In general: $T(R \bowtie_A S) = T(R) T(S) / max(V(R,A),V(S,A))$

Example of estimating the number of tuples after a join

T(R) = 10,000 T(S) = 20,000

V(R,A) = 100 V(S,A) = 200

How large is $R \bowtie_A S$?

Answer: $T(R \bowtie_A S) = 10000 * 20000/200 = 1M$

The expected number of tuples after a join on multiple attributes is:

 $T(R \bowtie_{A,B} S) =$

 $T(R) \ T(S)/[max(V(R,A),V(S,A))max(V(R,B),V(S,B))]$

Histograms tell you how many tuples have R.A values within a certain range

- Maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

An example histogram on salary:

Employee(ssn, name, salary, phone)

Salary:	020k	20k40k	40k60k	60k80k	80k100k	> 100k
Tuples	200	800	5000	12000	6500	500

T(Employee) = 25000, but now we know the distribution

We can use histograms to estimate the size of Employee \bowtie_{Salary} Ranks

Ranks(rankName, salary)

Employee .Salary	020k	20k40k	40k60k	60k80k	80k100k	> 100k
	200	800	5000	12000	6500	500

Ranks. Salary	020k	20k40k	40k60k	60k80k	80k100k	> 100k
	8	20	40	80	100	2

If we don't know how many distinct values there are in each bin, we can estimate:

- V(Employee, Salary) = 200
- -V(Ranks, Salary) = 250

Then T(Employee
$$\bowtie_{Salary}$$
 Ranks) =
= $\Sigma_{all\; bins\; i}$ T(Emp_i) * T(Ranks_i)/ 250
= $(200*8 + 800*20 + 5000*40 + 12000*80 + 6500*100 + 500*2)/250$

Summary of query optimization process

- 1. Parse your query into tree form
- 2. Move selections as far down the tree as you can
- 3. Project out unwanted attributes as early as you can, when you have their tuples in memory anyway
- 4. Pick a good join order, based on the **expected size** of intermediate results
- 5. Pick an **implementation** for each operation in the tree