

Dynamic programming is a good

 (bottom-up) way to choose join orderingFind the best plan for each
subquery Q of
\{R1, ..., Rn\}:

1. $\{\mathrm{R} 1\}, \ldots,\{\mathrm{Rn}\}$
2. $\{R 1, R 2\},\{R 1, R 3\}, \ldots$, \{Rn-1, Rn\}
3. \{R1, R2, R3\}, \{R1, R2, R4\},
4. ...
5. $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$

Output:

1. A best plan Plan(Q)
2. $\operatorname{Cost}(\mathrm{Q})$
3. Size(Q)

The ith step of the dynamic program

For each $\mathrm{Q} \subseteq\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ of size i do:

1. For every pair $\mathrm{Q} 1, \mathrm{Q} 2$ such that $\mathrm{Q}=\mathrm{Q} 1 \cup \mathrm{Q} 2$, compute $\operatorname{cost(Plan(Q1)\bowtie ~Plan(Q2))~}$
$\operatorname{Cost}(\mathrm{Q})=$ the smallest such cost
Plan $(Q)=$ the corresponding plan
2. Compute Size(Q)

Dynamic Programming
- Return $\operatorname{Plan}(\{\mathrm{R} 1, \ldots, \mathrm{Rn}\})$

Computing the Cost of a Plan Recursively

To illustrate, we will make the following simplifications:

- $\operatorname{Cost}(\mathrm{P} 1 \bowtie \mathrm{P} 2)=\operatorname{Cost}(\mathrm{P} 1)+\operatorname{Cost}(\mathrm{P} 2)+$ size(intermediate results for P1 and P2)
- Intermediate results:
- If P1 is a join, then the size of the intermediate result is size(P1), otherwise the size is 0
- Similarly for P2

Q

- Cost of a scan $=0$

Example

- $\operatorname{Cost(R5} \bowtie$ R7)
$=\operatorname{Cost}(\mathrm{R} 5)+\operatorname{Cost}(R 7)$
+ intermediate results for R5 and R7
$=0 \quad$ (no intermediate results)
- $\operatorname{Cost((R2\bowtie R1)\bowtie R7)~}$
$=\operatorname{Cost}(R 2 \bowtie R 1)+\operatorname{Cost}(R 7)+\operatorname{size}(R 2 \bowtie R 1)$
$=\operatorname{size}(\mathrm{R} 2 \bowtie \mathrm{R} 1)$
Intermediate result of R2 \bowtie R1

Rough Estimation of a Plan Size

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: $T(A \bowtie B)=0.01 * T(A) * T(B)$

We Actually Start with Subqueris of

 Size 1| Subquery | Size | Lowest
 Cost | Plan |
| :---: | :---: | :---: | :---: |
| R | | | |
| S | | | |
| T | | | |
| U | | | |

$\mathbf{R} \bowtie$ S $\mathrm{S}^{\text {T }} \bowtie \mathbf{U}$	Subquery	Size	Lowest Cost	Plan
	RS	100k	0	RS
Number of tuples:$R=2000$	RT	60k	0	RT
	RU	20k	0	RU
S = 5000	ST	150k	0	ST
$\text { T = } 3000$	SU	50k	0	SU
Size estimate:$\begin{aligned} & \operatorname{size}(A \bowtie B)= \\ & .01 * \operatorname{size}(A) * \operatorname{size}(B) \end{aligned}$	TU	30k	0	TU
	RST	3M	$\begin{gathered} 0+0+0+ \\ 60 \mathrm{k} \end{gathered}$	(RT)S
	RSU	1M	20k	(RU)S
	RTU	0.6M	20k	(RU) ${ }^{\text {T }}$
	STU	1.5M	30k	(TU)S
Unrealistic!	RSTU	30M	$\begin{gathered} 60 \mathrm{k}+50 \mathrm{k}= \\ 110 \mathrm{k} \\ \hline \end{gathered}$	(RT)(SU)

Join order options for RSTU

- Cost of (RST) $\mathrm{U}=60 \mathrm{~K}+0+3 \mathrm{M}+0$
- Cost of (RSU)T $=20 \mathrm{~K}+0+1 \mathrm{M}+0$
- Cost of (RTU)S $=20 \mathrm{~K}+0+.6 \mathrm{M}+0$
- Cost of (STU)R $=30 \mathrm{~K}+0+1.5 \mathrm{M}+0$
- Cost of (RS)(TU) $=0+0+100 \mathrm{~K}+30 \mathrm{~K}$
- Cost of (RT)(SU) $=0+0+60 \mathrm{~K}+50 \mathrm{~K}$
- Cost of (RU)(TS) $=0+0+20 \mathrm{~K}+150 \mathrm{~K}$

What if we don’t oversimplify?

- More realistic size/cost estimations!! (next slides)
- Use heuristics to reduce the search space
- Consider only left linear trees
- No trees with cartesian products:
$\mathbf{R}(\mathbf{A}, \mathbf{B}) \mathbf{S (B , C)} \mathbf{T}(\mathbf{C}, \mathbf{D})$
$(\mathrm{R} \bowtie \mathrm{T}) \bowtie$ S has a cartesian product

Completing the Physical Query Plan

- Choose algorithm to implement each operator

Need to consider more than I/O cost:

- How much memory do we have ?
- Are the input operand(s) sorted ?
- Decide for each intermediate result:
- Materialize
- Pipeline

Completing a Physical Query Plan

Example 16.36
Logical plan:
Main memory M = 101 blocks of space

Naive evaluation:
2 partitioned hash-joins, materialized
(Make sure buckets fit in memory!)
Cost $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 k+3 \mathrm{~B}(\mathrm{U})=75000+4 k$

Example 16.36

Smarter:

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R bucket in memory (50 buffers at a time), join with S (1 buffer at a time); hash result on y into 50 buckets (50 buffers) -- here we pipeline
Cost so far: 3B(R) $+3 \mathrm{~B}(\mathrm{~S})$

Example 16.36

Summary:

- If $k<=50, \quad$ cost $=55,000$
- If $50<k<=5000$,
cost $=75,000+2 k$
- If $k>5000$,
cost $=75,000+4 k$

Continuing:

- If $k>5000$, then 50 blocks of memory would make each bucket of the intermediate result too big to fit into memory: materialize, use a second pass to partition the k blocks, instead of pipelining them
- 2 partitioned hash-joins
- $\operatorname{Cost} 3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 k+3 \mathrm{~B}(\mathrm{U})=75000+4 k$

Estimating Intermediate Result
Sizes
because what algorithm you should or could use
depends very strongly on the sizes of the
relations

The number of tuples after projection is:
Easy: $T\left(\Pi_{L}(R)\right)=T(R)$

The number of tuples after selection is:
$\mathrm{S}=\sigma_{\mathrm{A}=\mathrm{c}}(\mathrm{R})$

- $0<=\mathrm{T}(\mathrm{S})<=\mathrm{T}(\mathrm{R})$
- Expected value: $\mathrm{T}(\mathrm{S})=\mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{A})<$
$\mathrm{S}=\sigma_{\mathrm{A}<\mathrm{C}}(\mathrm{R})$
- $\mathrm{T}(\mathrm{S})$ can be anything from 0 to $\mathrm{T}(\mathrm{R})$

A good
guess, guess,
though never true in
practice. Does not require storing many statistics

The number of tuples after a join is:
R $\bowtie_{A} S$

- When the set of A values are disjoint, then
$T\left(R \bowtie_{A} S\right)=0$
- When A is a key in S and a foreign key in R, then $T\left(R \bowtie_{A} S\right)=T(R)$
- When A is a key in both R and S, then $T\left(R \bowtie_{A} S\right)$
$=\min (\mathrm{T}(\mathrm{R}), \mathrm{T}(\mathrm{S}))$
Otherwise...

Some assumptions to help us guess the number of tuples resulting from a join:

Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{A})$, then the set of A values of R is included in the set of A values of S (True if A is a foreign key in R , and a key in S)
Preservation of values: for any other attribute B, $\mathrm{V}\left(\mathrm{R} \bowtie_{\mathrm{A}} \mathrm{S}, \mathrm{B}\right)=\mathrm{V}(\mathrm{R}, \mathrm{B}) \quad($ or $\mathrm{V}(\mathrm{S}, \mathrm{B}))$

The number of tuples after a join is...

If $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{A})$
Then we expect each tuple t in R to join some tuples in S

- How many? The fraction of S that has one particular value.
- On average $\mathrm{T}(\mathrm{S}) / \mathrm{V}(\mathrm{S}, \mathrm{A})$
- On average t contributes $T(S) / V(S, A)$ tuples to $R \bowtie_{A} S$

Hence $T\left(R \bowtie_{A} S\right)=T(R) T(S) / V(S, A)$

In general: $T\left(R \bowtie_{A} S\right)=T(R) T(S) / \max (V(R, A), V(S, A))$

The expected number of tuples after a join on multiple attributes is:
$T\left(R \bowtie_{A, B} S\right)=$
$\mathrm{T}(\mathrm{R}) \mathrm{T}(\mathrm{S}) /[\max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A})) \max (\mathrm{V}(\mathrm{R}, \mathrm{B}), \mathrm{V}(\mathrm{S}, \mathrm{B}))]$

Histograms tell you how many tuples have R.A values within a certain range

- Maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

An example histogram on salary:
Employee(ssn, name, salary, phone)

Salary:	$0 . .20 \mathrm{k}$	20 k .40 k	$40 \mathrm{k} . .60 \mathrm{k}$	60 k .80 k	$80 \mathrm{k} . .100 \mathrm{k}$	$>100 \mathrm{k}$
Tuples	200	800	5000	12000	6500	500

$T($ Employee $)=25000$, but now we know the distribution

We can use histograms to estimate the size of Employee $\bowtie_{\text {Salary }}$ Ranks Ranks(rankName, salary)

Employee Salary	$0 . .20 \mathrm{k}$	$20 \mathrm{k} . .40 \mathrm{k}$	$40 \mathrm{k} . .60 \mathrm{k}$	$60 \mathrm{k} . .80 \mathrm{k}$	$80 \mathrm{k} . .100 \mathrm{k}$	$>100 \mathrm{k}$
	200	800	5000	12000	6500	500

If we don't know how many distinct values there are in each bin, we can estimate:

- V(Employee, Salary) = 200
$-\mathrm{V}($ Ranks, Salary $)=250$
Then T(Employee $\bowtie_{\text {salary }}$ Ranks) $=$
$=\sum_{\text {all bins i }} \mathrm{T}\left(\mathrm{Emp}_{\mathrm{i}}\right) * \mathrm{~T}\left(\right.$ Ranks $\left._{\mathrm{i}}\right) / 250$
$=(200 * 8+800 * 20+5000 * 40+$
$12000 * 80+6500 * 100+500 * 2) / 250$
$=\ldots$.

Summary of query optimization process

1. Parse your query into tree form
2. Move selections as far down the tree as you can
3. Project out unwanted attributes as early as you can, when you have their tuples in memory anyway
4. Pick a good join order, based on the expected size of intermediate results
5. Pick an implementation for each operation in the tree
