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12: Query Optimization

The order that relations are joined in has 
a huge impact on performance

Given:
query  R1 ⋈ … ⋈ Rn,
function cost( ),

find the best join tree  
for the query

R3 R1 R2 R4

Plan = tree
Partial plan = subtree

Dynamic programming is a good 
(bottom-up) way to choose join ordering

Find the best plan for each 
subquery Q of 
{R1, …, Rn}:
1. {R1}, …, {Rn}
2. {R1, R2}, {R1, R3}, …, 

{Rn-1, Rn}
3. {R1, R2, R3}, {R1, R2, R4}, 

…
4. …
5. {R1, …, Rn}

Output:
1. A best plan 

Plan(Q)
2. Cost(Q)
3. Size(Q)

The ith step of the dynamic program

For each Q ⊆ {R1, …, Rn} of size i do:

1. For every pair Q1, Q2 such that Q = Q1 ∪ Q2,
compute cost(Plan(Q1) ⋈ Plan(Q2))
Cost(Q) = the smallest such cost
Plan(Q) = the corresponding plan

2. Compute Size(Q)



Dynamic Programming
• Return Plan({R1, …, Rn})

Computing the Cost of a Plan 
Recursively

To illustrate, we will make the following simplifications:
• Cost(P1 ⋈ P2) = Cost(P1) + Cost(P2) +

size(intermediate results for P1 and P2)
• Intermediate results:

– If P1 is a join, then the size of the intermediate result is 
size(P1), otherwise the size is 0

– Similarly for P2
• Cost of a scan = 0

Q1 Q2

Q

Example

• Cost(R5 ⋈ R7)  
= Cost(R5) + Cost(R7)

+ intermediate results for R5 and R7
= 0       (no intermediate results)

• Cost((R2 ⋈ R1) ⋈ R7) 
= Cost(R2 ⋈ R1) + Cost(R7) + size(R2 ⋈ R1)
= size(R2 ⋈ R1)

Intermediate result of R2 ⋈ R1

Rough Estimation of a Plan Size

• Relations: R, S, T, U
• Number of tuples: 2000, 5000, 3000, 1000
• Size estimation: T(A ⋈ B) = 0.01*T(A)*T(B)



Subquery Size Lowest 
Cost Plan

RS

RT

RU

ST

SU

TU

RST

RSU

RTU

STU

RSTU

R ⋈ S ⋈ T ⋈ U 
Number of tuples: 

R = 2000
S = 5000
T = 3000
U = 1000

Size estimate: 
size(A ⋈ B) = .01*size(A) 

*size(B)

Unrealistic!

Subquery Size Lowest 
Cost Plan

R

S

T

U

We Actually Start with Subqueris of 
Size 1
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Subquery Size Lowest 
Cost Plan

RS 100k 0 RS

RT 60k 0 RT

RU 20k 0 RU

ST 150k 0 ST

SU 50k 0 SU

TU 30k 0 TU

RST 3M 0 + 0 + 0 + 
60k (RT)S

RSU 1M 20k (RU)S

RTU 0.6M 20k (RU)T

STU 1.5M 30k (TU)S

RSTU 30M 60k+50k= 
110k (RT)(SU)

R ⋈ S ⋈ T ⋈ U 
Number of tuples: 

R = 2000
S = 5000
T = 3000
U = 1000

Size estimate: 
size(A ⋈ B) =
.01*size(A) *size(B)

Unrealistic!

Join order options for RSTU

• Cost of (RST)U = 60K + 0 + 3M + 0 
• Cost of (RSU)T = 20K + 0 + 1M + 0
• Cost of (RTU)S = 20K + 0 + .6M + 0
• Cost of (STU)R = 30K + 0 + 1.5M + 0
• Cost of (RS)(TU) = 0 + 0 + 100K + 30K
• Cost of (RT)(SU) = 0 + 0 + 60K + 50K
• Cost of (RU)(TS) = 0 + 0 + 20K + 150K



What if we don’t oversimplify?
• More realistic size/cost estimations!! (next 

slides)
• Use heuristics to reduce the search space 

– Consider only left linear trees
– No trees with cartesian products: 

R(A,B)  S(B,C)  T(C,D)
(R ⋈ T) ⋈ S has a cartesian product

Completing a Physical Query Plan

Completing the Physical Query Plan
• Choose algorithm to implement each operator

Need to consider more than I/O cost:
• How much memory do we have ?
• Are the input operand(s) sorted ?

• Decide for each intermediate result:
– Materialize
– Pipeline
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One option is to materialize intermediate 
results between operators

⋈

⋈

⋈ T

R S

U

HashTable S
repeat read(R, x)

y join(HashTable, x)
write(V1, y)

HashTable T
repeat read(V1, y)

z join(HashTable, y)
write(V2, z)

HashTable U
repeat read(V2, z)

u join(HashTable, z)
write(Answer, u)

HashTable S
repeat read(R, x)

y join(HashTable, x)
write(V1, y)

HashTable T
repeat read(V1, y)

z join(HashTable, y)
write(V2, z)

HashTable U
repeat read(V2, z)

u join(HashTable, z)
write(Answer, u)

V1

V2

Cost = ?
Memory = ?



The second option is to pipeline between 
operators

⋈

⋈

⋈ T

R S

U

HashTable1 S
HashTable2 T
HashTable3 U
repeat read(R, x)

y join(HashTable1, x) 
z join(HashTable2, y)
u join(HashTable3, z)
write(Answer, u)

HashTable1 S
HashTable2 T
HashTable3 U
repeat read(R, x)

y join(HashTable1, x) 
z join(HashTable2, y)
u join(HashTable3, z)
write(Answer, u)

pip
eli

ne

Cost = ?
Memory = ?

Example 16.36
Logical plan:

Main memory M = 101 blocks of space

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

Example 16.36

Naive evaluation: 
2 partitioned hash-joins, materialized
(Make sure buckets fit in memory!)
Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

Example 16.36

Smarter:
• Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
• Step 2: hash S on x into 100 buckets; to disk
• Step 3: read each R bucket in memory (50 buffers at a time), join 

with S (1 buffer at a time); hash result on y into 50 buckets (50 
buffers)   -- here we pipeline

Cost so far: 3B(R) + 3B(S)

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks



Example 16.36

Continuing:
• How large are the 50 buckets on y?    k/50 blocks each.
• If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
• Step 4: read U from disk, hash on y and join in memory
• Total cost: 3B(R) + 3B(S) + B(U) = 55,000

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

Example 16.36

Continuing:
• If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk

– Each bucket has size k/50 <= 100, i.e., it will fit into memory
• Step 4: partition U into 50 buckets
• Step 5: read each partition and join in memory
• Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

Example 16.36

Continuing:
• If k > 5000, then 50 blocks of memory would make each 

bucket of the intermediate result too big to fit into 
memory: materialize, use a second pass to partition the k
blocks, instead of pipelining them

• 2 partitioned hash-joins
• Cost 3B(R) + 3B(S) + 4k+ 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

Example 16.36

Summary:
• If k <= 50, cost = 55,000
• If 50 < k <=5000, cost = 75,000 + 2k
• If k > 5000, cost = 75,000 + 4k



Estimating Intermediate Result 
Sizes

because what algorithm you should or could use 
depends very strongly on the sizes of the 

relations

Still an area of research today

The number of tuples after projection is:
Easy: T(ΠL(R)) = T(R)

Because projections 
don’t eliminate 

duplicates

But the size of each 
tuple is smaller, of 

course

The number of tuples after selection is:
S = σA=c(R)

– 0 <= T(S) <= T(R)
– Expected value: T(S) = T(R)/V(R,A)

S = σA<c(R)
– T(S) can be anything from 0 to T(R)
– Heuristic: T(S) = T(R)/3

A good 
guess, 

though never 
true in 

practice.  
Does not 
require 

storing many 
statistics.

Of course 
one can do 

better!

The number of tuples after a join is:
R ⋈A S
• When the set of A values are disjoint, then 

T(R ⋈A S) = 0
• When A is a key in S and a foreign key in R, then 

T(R ⋈A S) = T(R)
• When A is a key in both R and S, then T(R ⋈A S) 

= min(T(R), T(S))

Otherwise…



Some assumptions to help us guess the 
number of tuples resulting from a join:

Containment of values: if V(R,A) <= V(S,A), then the set 
of A values of R is included in the set of A values of S
(True if A is a foreign key in R, and a key in S)

Preservation of values: for any other attribute B,  
V(R ⋈A S, B) = V(R, B)   (or V(S, B))

The number of tuples after a join is…

If V(R,A) <= V(S,A)
Then we expect each tuple t in R to join some tuples in S

– How many?  The fraction of S that has one particular value.
– On average T(S)/V(S,A) 
– On average t contributes T(S)/V(S,A) tuples to R ⋈A S

Hence T(R ⋈A S) = T(R) T(S) / V(S,A)

In general: T(R ⋈A S) = T(R) T(S) / max(V(R,A),V(S,A))

Example of estimating the number of 
tuples after a join

T(R) = 10,000       T(S) = 20,000
V(R,A) = 100       V(S,A) = 200
How large is R ⋈A S ?

Answer: T(R ⋈A S) = 10000 * 20000/200 = 1M

The expected number of tuples after a 
join on multiple attributes is:

T(R ⋈A,B S) = 

T(R) T(S)/[max(V(R,A),V(S,A))max(V(R,B),V(S,B))]



Histograms tell you how many tuples 
have R.A values within a certain range

• Maintained by the RDBMS
• Makes size estimation much more accurate 

(hence, cost estimations are more accurate)

An example histogram on salary:
Employee(ssn, name, salary, phone)

T(Employee) = 25000, but now we know the distribution

Salary: 0..20k 20k..40k 40k..60k 60k..80k 80k..100k > 100k

Tuples 200 800 5000 12000 6500 500

We can use histograms to estimate the 
size of Employee ⋈Salary Ranks

Ranks(rankName, salary)
Employee
.Salary 0..20k 20k..40k 40k..60k 60k..80k 80k..100k > 100k

200 800 5000 12000 6500 500

Ranks. 
Salary 0..20k 20k..40k 40k..60k 60k..80k 80k..100k > 100k

8 20 40 80 100 2

If we don’t know how many distinct values there 
are in each bin, we can estimate:
– V(Employee, Salary) = 200
– V(Ranks, Salary) = 250

Then T(Employee ⋈Salary Ranks) =
= Σall bins i T(Empi) * T(Ranksi)/ 250
= (200*8 + 800*20 + 5000*40 +

12000*80 + 6500*100 + 500*2)/250
= ….



Summary of query optimization process 

1. Parse your query into tree form
2. Move selections as far down the tree as you can
3. Project out unwanted attributes as early as you 

can, when you have their tuples in memory 
anyway

4. Pick a good join order, based on the expected 
size of intermediate results

5. Pick an implementation for each operation in 
the tree


