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12: Query Optimization

One-pass Algorithms
Duplicate elimination δ(R)
• Need to keep a dictionary in memory:

– balanced search tree
– hash table
– etc

• Cost: B(R)
• Assumption: B(δ(R)) <= M

R

Input
buffer

Scan
before?

M-1 buffers
Output
buffer

One-pass Algorithms

Grouping: γcity, sum(price) (R)
• Need to keep a dictionary in memory
• Also store the sum(price) for each city
• Cost: B(R)
• Assumption: number of cities fits in memory

Optimization
• Step 1: convert the SQL query to some logical 

plan
– Remove subqueries from conditions
– Map the SFW statement into RA expression

• Step 2: find a better logical plan, find an 
associated physical plan
– Algebraic laws:

• foundation for every optimization
– Two approaches to optimizations:

• Heuristics: apply laws that seem to result in cheaper plans
• Cost based: estimate size and cost of intermediate results, search 

systematically for best plan



SQL –> Logical Query Plans

Converting from SQL to Logical Plans

Select a1, …, an
From R1, …, Rk
Where C

Select a1, …, an
From R1, …, Rk
Where C

Πa1,…,an(σ C(R1 × R2 × … × Rk))

Πa1,…,an(γ b1, …, bm, aggs (σ C(R1 × R2 × … × Rk)))

Select a1, …, an
From R1, …, Rk
Where C
Group by b1, …, bl

Select a1, …, an
From R1, …, Rk
Where C
Group by b1, …, bl

Some nested queries can be flattened

Select distinct product.name
From product
Where product.maker in (Select company.name

From company
where company.city=“Urbana”)

Select distinct product.name
From product
Where product.maker in (Select company.name

From company
where company.city=“Urbana”)

Select distinct product.name
From product, company
Where product.maker = company.name AND

company.city=“Urbana”

Select distinct product.name
From product, company
Where product.maker = company.name AND

company.city=“Urbana”

Converting Nested Queries

Select distinct x.name, x.maker
From product x
Where x.color= “blue”
AND x.price >= ALL (Select y.price

From product y
Where x.maker = y.maker

AND y.color=“blue”)

Select distinct x.name, x.maker
From product x
Where x.color= “blue”
AND x.price >= ALL (Select y.price

From product y
Where x.maker = y.maker

AND y.color=“blue”)

Q: How do we convert this one to logical plan ?

Q: Give a list of product-manufacture pairs where 
the color of the product is blue and its prices is the 
highest among the products with blue color from 
that manufacture.



Converting Nested Queries

Select distinct x.name, x.maker
From product x
Where x.color= “blue”

AND x.price < SOME (Select y.price
From product y
Where x.maker = y.maker

AND y.color=“blue”)

Select distinct x.name, x.maker
From product x
Where x.color= “blue”

AND x.price < SOME (Select y.price
From product y
Where x.maker = y.maker

AND y.color=“blue”)

Let’s compute the complement first:

Converting Nested Queries

Select distinct x.name, x.maker
From product x, product y
Where x.color= “blue” AND x.maker = y.maker

AND y.color=“blue” AND x.price < y.price

Select distinct x.name, x.maker
From product x, product y
Where x.color= “blue” AND x.maker = y.maker

AND y.color=“blue” AND x.price < y.price

This one becomes a query without subqueries:

This returns exactly the products we DON’T 
want, so…

A set difference operator finishes the job

(Select x.name, x.maker
From product x
Where x.color = “blue”)

EXCEPT

(Select x.name, x.maker
From product x, product y
Where x.color= “blue” AND x.maker = y.maker

AND y.color=“blue” AND x.price < y.price)

(Select x.name, x.maker
From product x
Where x.color = “blue”)

EXCEPT

(Select x.name, x.maker
From product x, product y
Where x.color= “blue” AND x.maker = y.maker

AND y.color=“blue” AND x.price < y.price)

Now rewrite the logical plan to an 
equivalent but better one
Same query 

answer
Optimizer uses algebraic 
laws

Equivalen
tOriginal

Will probably run faster

Cost-based:
estimate size and cost 
of intermediate results, 
search systematically 

for best plan

Heuristic: 
likely to result in 
cheaper plans



Algebraic Laws

Algebraic Laws

• Commutative and Associative Laws
– R ∪ S = S ∪ R,  R ∪ (S ∪ T) = (R ∪ S) ∪ T
– R ∩ S = S ∩ R,  R ∩ (S ∩ T) = (R ∩ S) ∩ T
– R ⋈ S = S ⋈ R,  R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T

• Distributive Laws
– R ⋈ (S ∪ T)  =  (R ⋈ S) ∪ (R ⋈ T)

Algebraic laws about selections

σC AND D (R) = σC (σD (R)) = σC (R) ∩ σD (R)
σC OR D (R) = σC (R) ∪ σD (R)
σC (R ∪ S) = σC (R) ∪ σC (S) 

σC (R ⋈ S) = σC (R) ⋈ S
σC (R – S) = σC (R) – S
σC (R ∩ S)  = σC (R) ∩ S 

if C involves 
only attributes 

of R

R(A,B,C,D)   S(E,F,G)
σ F=3 (R ⋈D=E S) =

σ A=5 AND G=9 (R ⋈D=E S) =                         

(R ⋈D=E σ F=3 (S))

σA=5 (σ G=9(R ⋈D=E S))
= σA=5 (R ⋈D=E σG=9 (S))
= σA=5 (R) ⋈D=E σG=9 (S)



Algebraic laws for projection
ΠM(R ⋈ S) = ΠN(ΠP(R) ⋈ ΠQ(S))

where N, P, Q are appropriate subsets of attributes of M

ΠM(ΠN(R)) = ΠM,N(R)

R(A,B,C,D)      S(E,F,G)
ΠA,B,G(R ⋈D=E S) = Π ? (Π?(R) ⋈D=E Π?(S)) 

Algebraic laws for grouping and 
aggregation

δ (γA, agg(B)(R)) = γA, agg(B)(R)
γA, agg(B)(δ(R)) = γA, agg(B)(R), 

if agg is duplicate insensitive

The book describes additional algebraic laws, but even 
the book doesn’t cover them all.

SUM
COUNT

AVG
MIN
MAX

Heuristics-based Optimization
- or –
Do projections and selections as 
early as possible

Heuristic Based Optimizations
• Query rewriting based on algebraic laws
• Result in better queries most of the time
• Heuristics number 1:

– Push selections down
• Heuristics number 2:

– Sometimes push selections up, then down



Predicate Pushdown

Product Company

maker=name

σ price>100 AND city=“Urbana”

pname

Product Company

maker=name

price>100 

pname

city=“Urbana”

(but may cause us to lose an important ordering
of the tuples, if we use indexes).

For each company with a product costing 
more than $100, find the max price of its 
products
Select y.name, y.address, 

Max(x.price)
From product x, company y
Where x.maker = y.name  
GroupBy y.name
Having Max(x.price) > 100

Select y.name, y.address, 
Max(x.price)

From product x, company y
Where x.maker = y.name  
GroupBy y.name
Having Max(x.price) > 100

Select y.name, y.address,
Max(x.price)

From product x, company y
Where x.maker=y.name  and

x.price > 100
GroupBy y.name
Having Max(x.price) > 100

Select y.name, y.address,
Max(x.price)

From product x, company y
Where x.maker=y.name  and

x.price > 100
GroupBy y.name
Having Max(x.price) > 100

•Advantage: the size of the join will be smaller.
• Requires transformation rules specific to the grouping/aggregation

operators.
• Won’t work if we replace Max by Min.

Pushing predicates up

Create View V1 AS
Select x.category, 

Min(x.price) AS p
From product x
Where x.price < 20
GroupBy x.category

Create View V1 AS
Select x.category, 

Min(x.price) AS p
From product x
Where x.price < 20
GroupBy x.category

Create View V2 AS
Select y.cname, x.category, x.price
From product x, company y
Where x.maker=y.cname

Create View V2 AS
Select y.cname, x.category, x.price
From product x, company y
Where x.maker=y.cname

Select V2.category, V2.cname, V2.price
From V1, V2
Where V1.category = V2.category  and

V1.p = V2.price

Select V2.category, V2.cname, V2.price
From V1, V2
Where V1.category = V2.category  and

V1.p = V2.price

V1: categories and the cheapest 
price of the product
in that category under $20

V2: Company name, product 
category, and the price of the 
product made by that company

Query Rewrite:
Pushing predicates up

Create View V1 AS
Select   x.category, 

Min(x.price) AS p
From    product x
Where  x.price < 20
GroupBy  x.category

Create View V1 AS
Select   x.category, 

Min(x.price) AS p
From    product x
Where  x.price < 20
GroupBy  x.category

Create View V2 AS
Select   y.cname, x.category, x.price
From    product x, company y
Where  x.maker=y.cname

Create View V2 AS
Select   y.cname, x.category, x.price
From    product x, company y
Where  x.maker=y.cname

Select   V2.cname, V2.price
From    V1, V2
Where   V1.category = V2.category  and

V1.p = V2.price AND V1.p < 20

Select   V2.cname, V2.price
From    V1, V2
Where   V1.category = V2.category  and

V1.p = V2.price AND V1.p < 20
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Query Rewrite:
Pushing predicates up

Create View V1 AS
Select   x.category, 

Min(x.price) AS p
From    product x
Where  x.price < 20
GroupBy  x.category

Create View V1 AS
Select   x.category, 

Min(x.price) AS p
From    product x
Where  x.price < 20
GroupBy  x.category

Create View V2 AS
Select   y.cname, x.category, x.price
From    product x, company y
Where  x.maker=y.cname

AND x.price < 20

Create View V2 AS
Select   y.cname, x.category, x.price
From    product x, company y
Where  x.maker=y.cname

AND x.price < 20

Select   V2.cname, V2.price
From    V1, V2
Where   V1.category = V2.category  and

V1.p = V2.price AND V1.p < 20

Select   V2.cname, V2.price
From    V1, V2
Where   V1.category = V2.category  and

V1.p = V2.price AND V1.p < 20 Cost-based Optimization

Cost-based Optimizations
• Main idea: apply algebraic laws, until estimated 

cost is minimal
• Practically: start from partial plans, introduce 

operators one by one
– Will see in a few slides

• Problem: there are too many ways to apply the 
laws, hence too many (partial) plans

Often: generate a partial plan, optimize it, 
then add another operator, …

Top-down: the partial plan is a top fragment of the 
logical plan

Bottom up: the partial plan is a bottom fragment of 
the logical plan



Search Strategies
• Branch-and-bound:

– Remember the cheapest complete plan P seen by using 
heuristics so far and its cost C

– Stop generating partial plans whose cost is > C
– If a cheaper complete plan P is found, replace C with P

• Hill climbing:
– Find nearby plans that have lower cost by making small 

changes to the plan

• Dynamic programming:
– Compute cheapest partial plans of the smallest and compute 

cheapest partial plans of larger size next 
– Remember the all cheapest partial plans

Algebraic Laws for Joins
• Commutative and Associative Laws

– R ∪ S = S ∪ R,  R ∪ (S ∪ T) = (R ∪ S) ∪ T
– R ∩ S = S ∩ R,  R ∩ (S ∩ T) = (R ∩ S) ∩ T
– R ⋈ S = S ⋈ R,  R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T

• Distributive Laws
– R ⋈ (S ∪ T)  =  (R ⋈ S) ∪ (R ⋈ T)

The order that relations are joined in has 
a huge impact on performance

Given:
query  R1 ⋈ … ⋈ Rn,
function cost( ),

find the best join tree  
for the query

R3 R1 R2 R4

Plan = tree
Partial plan = subtree

Types of Join Trees
• Left deep (all right children are leaves)

R3 R1

R5

R2

R4



Types of Join Trees
• Right deep (all left children are leaves)

R3

R1
R5

R2 R4

Types of Join Trees
• Bushy if neither left-deep nor right-deep

R3

R1

R2 R4

R5

Dynamic programming is a good 
(bottom-up) way to choose join ordering

Find the best plan for each 
subquery Q of 
{R1, …, Rn}:
1. {R1}, …, {Rn}
2. {R1, R2}, {R1, R3}, …, 

{Rn-1, Rn}
3. {R1, R2, R3}, {R1, R2, R4}, 

…
4. …
5. {R1, …, Rn}

Output:
1. Size(Q)
2. A best plan 

Plan(Q)
3. Cost(Q)

The ith step of the dynamic program
For each Q ⊆ {R1, …, Rn} of size i do:

1. Compute Size(Q) (later…)
2. For every pair Q1, Q2 such that Q = Q1 ∪ Q2,

compute cost(Plan(Q1) ⋈ Plan(Q2))
Cost(Q) = the smallest such cost
Plan(Q) = the corresponding plan



Dynamic Programming
• Return Plan({R1, …, Rn})

Dynamic Programming
To illustrate, we will make the following simplifications:
• Cost(P1 ⋈ P2) = Cost(P1) + Cost(P2) +

size(intermediate results for P1 and P2)
• Intermediate results:

– If P1 is a join, then the size of the intermediate result is 
size(P1), otherwise the size is 0

– Similarly for P2
• Cost of a scan = 0

Dynamic Programming
• Example:
• Cost(R5 ⋈ R7)  

= Cost(R5) + Cost(R7)
+ intermediate results for R5 and R7

= 0       (no intermediate results)
• Cost((R2 ⋈ R1) ⋈ R7) 

= Cost(R2 ⋈ R1) + Cost(R7) + size(R2 ⋈ R1)
= size(R2 ⋈ R1)

Dynamic Programming
• Relations: R, S, T, U
• Number of tuples: 2000, 5000, 3000, 1000
• Size estimation: T(A ⋈ B) = 0.01*T(A)*T(B)



Subquery Size Cost Plan

RS

RT

RU

ST

SU

TU

RST

RSU

RTU

STU

RSTU

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) = 1000

T(A ⋈ B) 
= 0.01*T(A)*T(B)

100k 0 RS

60K       0         RT
20K       0         RU

150K       0         ST
50K       0          SU
30K        0         TU

0.01 * T(R) * T(S)
= 0.01 * 2000 * 5000
= 100,000 = 100k

Subquery Size Cost Plan

RS

RT

RU

ST

SU

TU

RST

RSU

RTU

STU

RSTU

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) = 1000

T(A ⋈ B) 
= 0.01*T(A)*T(B)100K 0 RS

60K         0       RT
20K         0       RU

150K         0       ST
50K         0        SU
30K         0        TU

Cost((RS)T)
= Cost((RS)T)
= Cost(RS) + Cost(T)

+ size(RS)
= 100k

Cost((RT)S)
= Cost((RT)S)
= Cost(RT) + Cost(S)

+ size(RT)
= 60k

Cost((ST)R) = 150k

3M        60K  (RT)S
1M         20K  (RU)S
0.6M      20K  (RU)T
1.5M      30K  (TU)S

Subquery Size Cost Plan

RS

RT

RU

ST

SU

TU

RST

RSU

RTU

STU

RSTU

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) = 1000

T(A ⋈ B) 
= 0.01*T(A)*T(B)100K 0 RS

60K         0       RT
20K         0       RU

150K         0       ST
50K         0        SU
30K         0         TU
3M        60K  (RT)S

1M         20K  (RU)S
0.6M      20K (RU)T
1.5M      30K (TU)S

1. Cost(R(STU)) = 30K+1.5M
2. Cost(S(RTU)) = 20K+0.6M
3. Cost(T(RSU)) = 20K+1M
4. Cost(U(RST)) = 60K+3M
5. Cost((RS)(TU)) = 130K
6. Cost((RT)(SU)) = 110K
7. Cost((RU)(ST)) = 170K

30M    60K+50K (RT)(SU)

Subquery Size Cost Plan

RS 100k 0 RS

RT 60k 0 RT

RU 20k 0 RU

ST 150k 0 ST

SU 50k 0 SU

TU 30k 0 TU

RST 3M 60k (RT)S

RSU 1M 20k (RU)S

RTU 0.6M 20k (RU)T

STU 1.5M 30k (TU)S

RSTU 30M 60k+50k=110k (RT)(SU)



What if we don’t oversimplify?
• More realistic size/cost estimations!! (next

lecture)
• Use heuristics to reduce the search space 

– Consider only left linear trees
– No trees with cartesian products: 

R(A,B)  S(B,C)  T(C,D)
(R ⋈ T) ⋈ S has a cartesian product

Summary of query optimization process 
so far 

1. Parse your query into tree form
2. Move selections as far down the tree as you can
3. Project out unwanted attributes as early as you 

can, when you have their tuples in memory 
anyway

4. Pick a good join order, based on the expected 
size of intermediate results

5. Pick an implementation for each operation in 
the tree


