

One-pass Algorithms

Grouping: $\gamma_{\text {city, sum(price) }}(\mathrm{R})$

- Need to keep a dictionary in memory
- Also store the sum(price) for each city
- Cost: B(R)
- Assumption: number of cities fits in memory

One-pass Algorithms

Duplicate elimination $\delta(\mathrm{R})$

- Need to keep a dictionary in memory:
- balanced search tree
- hash table
- etc
- Cost: B(R)
- Assumption: $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}$

Optimization

- Step 1: convert the SQL query to some logical plan
- Remove subqueries from conditions
- Map the SFW statement into RA expression
- Step 2: find a better logical plan, find an associated physical plan
- Algebraic laws:
- foundation for every optimization
- Two approaches to optimizations:
- Heuristics: apply laws that seem to result in cheaper plans
- Cost based: estimate size and cost of intermediate results, search systematically for best plan

Some nested queries can be flattened

Select distinct product.name
From product
Where product.maker in (Select company.name
From company
where company.city="Urbana")

[^0]Converting from SQL to Logical Plans

Select a_{1}, \ldots, a_{n}
From $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{k}}$
$\Pi_{\mathrm{a} 1, \ldots, \mathrm{an}}\left(\sigma_{\mathrm{C}}\left(\mathrm{R}_{1} \times \mathrm{R}_{2} \times \ldots \times \mathrm{R}_{\mathrm{k}}\right)\right)$
Where C

Select $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$
From $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{k}}$
Where C
Group by $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{1}$

$$
\Pi_{\mathrm{a} 1, \ldots, \mathrm{an}}\left(\gamma_{\mathrm{b} 1, \ldots, \mathrm{bm}, \mathrm{aggs}}\left(\sigma_{\mathrm{C}}\left(\mathrm{R}_{1} \times \mathrm{R}_{2} \times \ldots \times \mathrm{R}_{\mathrm{k}}\right)\right)\right)
$$

Converting Nested Queries

Q: Give a list of product-manufacture pairs where the color of the product is blue and its prices is the highest among the products with blue color from that manufacture.

Select distinct x.name, x.maker
From product x
Where x.color= "blue"
AND x.price >= ALL (Select y.price
From product y Where x.maker = y.maker AND y.color="blue")
Q: How do we convert this one to logical plan ?

Converting Nested Queries

Let's compute the complement first:

Select distinct x.name, x.maker
From product x
Where x.color= "blue"
AND x.price < SOME (Select y.price
From product y
Where x.maker = y.maker
AND y.color="blue")

Where x.color= "blue"
From product y Where x.maker = y.maker AND y.color="blue")

Converting Nested Queries

This one becomes a query without subqueries:

Select distinct x.name, x.maker
From product x, product y
Where x.color= "blue" AND x.maker = y.maker
AND y.color="blue" AND x.price < y.price

This returns exactly the products we DON'T want, so...

A set difference operator finishes the job

(Select x.name, x.maker
From product x
Where x.color = "blue")
EXCEPT
(Select x.name, x.maker From product x , product y Where x.color= "blue" AND x.maker = y.maker AND y.color="blue" AND x.price < y.price)

Algebraic Laws

- Commutative and Associative Laws
$-R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) \cup T$
$-R \cap S=S \cap R, R \cap(S \cap T)=(R \cap S) \cap T$
$-R \bowtie S=S \bowtie R, R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
- Distributive Laws
$-R \bowtie(S \cup T)=(R \bowtie S) \cup(R \bowtie T)$

Heuristic Based Optimizations

- Query rewriting based on algebraic laws
- Result in better queries most of the time
- Heuristics number 1:
- Push selections down
- Heuristics number 2:
- Sometimes push selections up, then down

For each company more than \$100, find products	max price of its
Select y.name, y.address, Max(x.price) From product x, company y Where x.maker = y.name GroupBy y.name Having Max(x.price) > 100	Select y.name, y.address, Max(x.price) From product x , company y Where x.maker=y.name and x.price > 100 GroupBy y.name Having Max (x.price) > 100
- Advantage: the size of the join will be smaller. - Requires transformation rules specific to the grouping/aggregation operators. - Won't work if we replace Max by Min.	

Cost-based Optimizations

- Main idea: apply algebraic laws, until estimated cost is minimal
- Practically: start from partial plans, introduce operators one by one
- Will see in a few slides
- Problem: there are too many ways to apply the laws, hence too many (partial) plans

Often: generate a partial plan, optimize it, then add another operator, ...

Top-down: the partial plan is a top fragment of the logical plan

Bottom up: the partial plan is a bottom fragment of the logical plan

Search Strategies

- Branch-and-bound:

- Remember the cheapest complete plan P seen by using heuristics so far and its cost C
- Stop generating partial plans whose cost is > C
- If a cheaper complete plan P is found, replace C with P

- Hill climbing:

- Find nearby plans that have lower cost by making small changes to the plan
- Dynamic programming:
- Compute cheapest partial plans of the smallest and compute cheapest partial plans of larger size next
- Remember the all cheapest partial plans

Algebraic Laws for Joins

- Commutative and Associative Laws
$-R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) \cup T$
$-R \cap S=S \cap R, R \cap(S \cap T)=(R \cap S) \cap T$
$-R \bowtie S=S \bowtie R, R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
- Distributive Laws
$-R \bowtie(S \cup T)=(R \bowtie S) \cup(R \bowtie T)$

The order that relations are joined in has a huge impact on performance

Given:

query $\mathbf{R 1} \bowtie \ldots \bowtie \mathbf{R n}$,
function $\operatorname{cost}()$,
find the best join tree for the query

Types of Join Trees

- Left deep (all right children are leaves)

R3
R1

Types of Join Trees

- Right deep (all left children are leaves)

Dynamic programming is a good (bottom-up) way to choose join ordering

Find the best plan for each
subquery Q of
\{R1, ..., Rn\}:

1. $\{\mathrm{R} 1\}, \ldots,\{\mathrm{Rn}\}$
2. $\{R 1, R 2\},\{R 1, R 3\}, \ldots$, \{Rn-1, Rn\}
3. \{R1, R2, R3\}, \{R1, R2, R4\},
4. ...
5. $\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$

Output:

1. Size(Q)
2. A best plan Plan(Q)
3. $\operatorname{Cost}(\mathrm{Q})$

The ith step of the dynamic program
For each $\mathrm{Q} \subseteq\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ of size i do:

1. Compute $\operatorname{Size}(\mathrm{Q})$ (later...)
2. For every pair $\mathrm{Q} 1, \mathrm{Q} 2$ such that $\mathrm{Q}=\mathrm{Q} 1 \cup \mathrm{Q} 2$, compute $\operatorname{cost}(\mathrm{Plan}(\mathrm{Q} 1) \bowtie \operatorname{Plan}(\mathrm{Q} 2))$
$\operatorname{Cost}(\mathrm{Q})=$ the smallest such cost
$\mathrm{Plan}(\mathrm{Q})=$ the corresponding plan

Dynamic Programming
- Return $\operatorname{Plan}(\{\mathrm{R} 1, \ldots, \mathrm{Rn}\})$

Dynamic Programming

- Example:
- $\operatorname{Cost}\left(\right.$ R5 ${ }^{\bowtie}$ R7)
$=\operatorname{Cost}(\mathrm{R} 5)+\operatorname{Cost}(R 7)$
+ intermediate results for R5 and R7
$=0 \quad$ (no intermediate results)
- $\operatorname{Cost}((\mathrm{R} 2 \bowtie \mathrm{R} 1) \bowtie \mathrm{R} 7)$
$=\operatorname{Cost}(\mathrm{R} 2 \bowtie \mathrm{R} 1)+\operatorname{Cost}(\mathrm{R} 7)+\operatorname{size}(\mathrm{R} 2 \bowtie \mathrm{R} 1)$
$=\operatorname{size}(\mathrm{R} 2 \bowtie \mathrm{R} 1)$

Dynamic Programming

To illustrate, we will make the following simplifications:

- $\operatorname{Cost}(\mathrm{P} 1 \bowtie \mathrm{P} 2)=\operatorname{Cost}(\mathrm{P} 1)+\operatorname{Cost}(\mathrm{P} 2)+$ size(intermediate results for P1 and P2)
- Intermediate results:
- If P1 is a join, then the size of the intermediate result is size(P1), otherwise the size is 0
- Similarly for P2
- Cost of a scan $=0$
\square

Dynamic Programming

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: $\mathrm{T}(\mathrm{A} \bowtie \mathrm{B})=0.01 * \mathrm{~T}(\mathrm{~A}) * \mathrm{~T}(\mathrm{~B})$

Subquery	Size	Cost	Plan	
RS	100K	0	RS	
RT	60K	0	RT	
RU	20K	0	RU	
ST	150K	0	ST	
su	50K	0	SU	
тU	30K	0	TU	
RST	3M	60K	(RT)S	
RSU	1M	20K	(RU)S	
RTU	0.6M	20K	(RU)T	
stu	1.5M	30K	(TU)S	
RSTU				

| Subquery | Size | Cost | Plan |
| :---: | :---: | :---: | :---: | :---: |
| RS | 100 k | 0 | RS |
| RT | 60 k | 0 | RT |
| RU | 20 k | 0 | RU |
| ST | 150 k | 0 | ST |
| SU | 50 k | 0 | SU |
| TU | 30 k | 0 | TU |
| RST | 3 M | 60 k | (RT)S |
| RSU | 1 M | 20 k | (RU)S |
| RTU | 0.6 M | 20 k | (RU)T |
| STU | 1.5 M | 30 k | (TU)S |
| RSTU | 30 M | $60 \mathrm{k}+50 \mathrm{k}=110 \mathrm{k}$ | (RT)(SU) |

What if we don't oversimplify?

- More realistic size/cost estimations!! (next lecture)
- Use heuristics to reduce the search space
- Consider only left linear trees
- No trees with cartesian products:
$\mathbf{R}(\mathbf{A}, \mathbf{B}) \mathbf{S (B , C)} \mathbf{T}(\mathbf{C}, \mathbf{D})$
$(\mathrm{R} \bowtie \mathrm{T}) \bowtie \mathrm{S}$ has a cartesian product

Summary of query optimization process so far

1. Parse your query into tree form
2. Move selections as far down the tree as you can
3. Project out unwanted attributes as early as you can, when you have their tuples in memory anyway
4. Pick a good join order, based on the expected size of intermediate results
5. Pick an implementation for each operation in the tree

[^0]: Select distinct product.name
 From product, company
 Where product.maker = company.name AND company.city="Urbana"

