
CS411
Database Systems

Kazuhiro Minami

11: Query Execution

Goals of Query Execution

• Given a RA operator such as Join, we want to
design an algorithm to implement it

• What factor do we need to consider?
• What are the following cost parameters?

– B(R)
– T(R)
– V(R, a)
– M

2

Challenges in Query Execution

• Remember that only place we can modify data
within a block is main memory

• However, we often don’t have enough main
memory buffer to keep all the records of a
relation

• Q1. We want to sort records in a table, which is
bigger than main memory. How can we do this?

• Q2. We want to join relations, which do not fit in
main memory. How can do this?

3

Q1: How to sort records in a large table?

4

Disk

Main memory
buffer

2, 3 5, 8

9, 4 3, 8

10, 1 9, 7

1, 5 4, 3

2, 5 7, 7

9, 10 1, 7

• Each block or page contains 2 records

Read/write
blocks

You can sort
records on
memory

You can sort
records on
memory

Divide-and-conquer Approach

1. Divide the unsorted list into two sublists of
about half the size

2. Sort each sublist recursively
3. Merge the two sublists back into one sorted list

5

MergeSort

Q: Can we apply this technique to our problem?

(Human) Merge Sort Algorithm
1. Receive an unsorted list from your parent
2. If the list contains more than one,

a) divide it into two unsorted sublist of the same size
b) Find two children (i.e., your classmates) and pass

them each of the sublists
c) Receive your children’s sorted sublists from the

smallest elements of the two list
3. Return elements in the sorted list from the

smallest one while coordinating with your
sibling

6

Example Merge Process

7

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

Merge MergeMerge Merge

Merge Merge

Merge

Important differences from the standard
Merge-sort

• Divide an unsorted list into sublist of size M
– Q: why M?

• Combine multiple sorted sublists into a single
sorted list
– Q: how many sublists do we merge?

8

Merge

External Merge-Sort
• Phase one: load M blocks in memory, sort

– Result: B(R)/M sorted sublists of size M

M blocks of main memory DiskDisk

. M blocks B(R)/M
sorted

sublists
R

Phase Two

• Merge M – 1 runs into a new run
• Result: runs have now M (M – 1) blocks

M blocks of main memory

DiskDisk

. . .
Input M-1

Input 1

Input 2
. . . .

OutputM-1
sublists

Cost of Two-Phase, Multiway Merge Sort

• Step 1: sort M-1 sublists of size M, write
– Cost: 2B(R)

• Step 2: merge M-1 sublists, but include each tuple only
once
– Cost: B(R)

• Total cost: 3B(R), Assumption: B(R) <= M2

Update this figure: Cost of External
Merge Sort

• Number of passes:
• Think differently

– Given B = 4KB, M = 64MB, R = 0.1KB
– Pass 1: runs of length M/R = 640000

• Have now sorted runs of 640000 records
– Pass 2: runs increase by a factor of M/B – 1 = 16000

• Have now sorted runs of 10,240,000,000 = 1010 records
– Pass 3: runs increase by a factor of M/B – 1 = 16000

• Have now sorted runs of 1014 records
• Nobody has so much data !

• Can sort everything in 2 or 3 passes !

⎡ ⎤⎡ ⎤MNRBM /log1 1/ −+

If input relations are sorted, we can do
many other operations easily

• Duplicate removal δ(R)
• Grouping and aggregation

operations
• Binary operations: R ∩ S, R U

S, R – S

Check total cost and assumption of each
method with the textbook 15.4

If two relations are sorted, we can
perform Join (Simple Sort-based Join)

• Sort both R and S on the join attribute:
– Cost: 4B(R)+4B(S) (because need to write to disk)

• Read both relations in sorted order, match tuples
– Cost: B(R)+B(S)

• Difficulty: many tuples in R may match many in S
– If at least one set of tuples fits in M, we are OK
– Otherwise need nested loop, higher cost

• Total cost: 5B(R)+5B(S)
• Assumption: B(R) <= M2, B(S) <= M2, and the tuples

with a common value for the join attributes fit in M.

The Problem Regarding Too Many
Tuples with the same join attributes

Sorted lists

a a a

a a a a

a a

a a

Disk

Main memory
buffers

Join

(a,a)
(a,a)
(a,a)
(a,a)
(a,a)
(a,a)
(a,a)
(a,a)

a a

a

Output
buffer

(a,a)
(a,a)
(a,a)

We could do better if there are not many
tuples with the same join attribute

(Sort-Merge-Join)
• Idea: compute the join during the merge phase
• Total cost: 3B(R)+3B(S)
• Assumption: B(R) + B(S) <= M2

Sorted sublists

R

S
Main memory

join

M-1 input buffers

Output bufferdisk

Q2: How to join two large tables without
sorting them?

17Disk

R

S
Main memory

Tuple-based Nested Loop Joins
• Join R S

for each tuple r in R do
for each tuple s in S do

if r and s join then output (r,s)

• Cost: T(R) T(S), or B(R) B(S) if R and S are
clustered

• Q: How many memory buffers do we need?

><

Block-based Nested Loop Joins

for each (M-1) blocks bs of S do
for each block br of R do

for each tuple s in bs do
for each tuple r in br do

if r and s join then output(r,s)

• Organize access to both argument relations by blocks
• Use as much main memory as we can to store tuples
belonging to relation S, the relation of the outer loop

Block-based Nested Loop Joins

. . .
. . .

R & S

Hash table for block of S
(k < B-1 pages)

Input buffer for R Output buffer

. . .

Join Result

joined
tuples

Block-based Nested Loop Joins

• Cost:
– Read S once: cost B(S)
– Outer loop runs B(S)/(M-1) times, and each time

need to read R: costs B(S)B(R)/(M-1)
– Total cost: B(S) + B(S)B(R)/(M-1)

• Notice: it is better to iterate over the smaller
relation first

• S R: S=outer relation, R=inner relation><

Divide-and-conquer Approach Again

• If one of input relations fit into main memory,
our job is easy

• So, we want to divide relations R and S into sub-
relations R1,…,Rn and S1,…,Sn such that R S
= (R1 S1) U … U (Rn Sn)

• Q: How can we divide R and S?

22

><
>< ><

Hashing-Based Algorithms

• Hash all the tuples of input relations using an
appropriate hash key such that:
– All the tuples that need to be considered together to

perform an operation goes to the same bucket
• Perform the operation by working on a bucket (a

pair of buckets) at a time
– Apply a one-pass algorithm for the operation

• Reduce the size of input relations by a factor of M

Partitioned Hash Join
R S
• Step 1:

– Hash S into M buckets
– send all buckets to disk

• Step 2
– Hash R into M buckets
– Send all buckets to disk

• Step 3
– Join every pair of buckets

><

Partitioned
Hash-Join

• Partition tuples in R
and S using join
attributes as key
hash

• Tuples in partition
Ri only match tuples
in partition Si.

Relation
R OUTPUT

2INPUT

1

hash
function
h M-1

Buckets

R1
R2

RM-1

. . .

Relation
S OUTPUT

2INPUT

1

hash
function
h M-1

Buckets

S1

S2

SM-1

. . .

Partitioned Hash-Join: Second Pass
• Read in a partition of Ri, hash it using another

hash function h’
• Scan matching partition of S, search for matches.

Buckets
for R

Buckets
for S

R1
R2

RM-1

S1

S2

SM-1

hash
function

h’

Main Memory Buffers

M-1 blocks

Join

Partitioned Hash Join

• Cost: 3B(R) + 3B(S)
• Assumption: min(B(R), B(S)) <= M2

Sort-based vs. Hash-based Algorithms

• Hash-based algorithms for binary operations have
a size requirement only on the smaller of two
input relations

• Sort-based algorithms sometimes allow us to
produce a result in sorted order and take
advantage of that sort later

• Hash-based algorithm depends on the buckets
being of equal size, which may not be true if the
number of different hash keys is small

Two-Pass Algorithms
Based on Index

Index-based Algorithms

• The existence of an index on one ore more
attributes of a relations makes available some
algorithm that would not be feasible without the
index

• Useful for selection operations
• Also, algorithms for join and other binary

operations use indexes to good advantage

Clustering indexes

• In a clustered index all tuples with the same value
of the key are clustered on as few blocks as
possible

a a a a a a a a a a

All the ‘a’ tuples

Q: how many blocks do we need to read?

Index Based Selection

• Selection on equality: σa=v(R)
• Clustered index on a: cost B(R)/V(R,a)
• Unclustered index on a: cost T(R)/V(R,a)

We here ignore the cost of reading index blocks

Index Based Join
• R S
• Assume S has an index on the join attribute
• Iterate over R, for each tuple fetch corresponding

tuple(s) from S
• Assume R is clustered. Cost:

– If index is clustered: B(R) + T(R)B(S)/V(S,a)
– If index is unclustered: B(R) + T(R)T(S)/V(S,a)

><
Index Based Join

• Assume both R and S have a sorted index (B-
tree) on the join attribute

• Then perform a merge join (called zig-zag join)
• Cost: B(R) + B(S)

Index

Index

1 3 4 4 4 5 6

2 2 4 4 6 7

Summary
• One-pass algorithms (Read the textbook 15.2)

– Read the data only once from disk
– Usually, require at least one of the input relations fit

in main memory
Nested-Loop Join algorithms
– Read one relation only once, while the other will be

read repeatedly from disk
Two-pass algorithms
– First pass: read data from disk, process it, write it to

the disk
– Second pass: read the data for further processing

