
CS411
Database Systems

Kazuhiro Minami

10: Indexing 2
11: Query Execution

Revisiting Sequential Indexes on a Sequential
Data File

10

30

90

110

1
02
0
30

40

50

60

70

80

data file

index file
90

100

110

140

150

160

50

70

150

180

Q: how many disk I/O’s do we
need to get a record with key
value‘150’?
Q: If we want to avoid a binary
search on index blocks, what can
we do?

Main memory
buffer

Direct Addressing Approach

10

15

30

35

1
02
0
30

40

50

70

80

85

data fileindex file

90

100

110

140

150

160

20

25

40

45

• Suppose that a key value
is a multiple of 5
• We add an entry for every
possible key value in index
• If we look up a record
with key ‘50’,
• then, we can figure out
that we should look up the
5th index block
• Q: How many disk I/O’s
do we need in this scheme?
• Q: Is there any problem?

50

55

70

75

60

65

80

85

NULL

NULL

NULL

NULL

NULL

NULL
NULL

NULL

Many more
index blocks!

Hashing-based Approach
90

20

110

1
02
0
30

40

50

70

80

85

data fileindex file

90

100

110

140

150

160

10

100

30

40

85

150

50

140

70

160

• Consider a hash function
h(v) = v mod 9

• Pointer for value v goes to
h(v)th index block
• Note that we only store
only pointers to existing
records
• Q: How many index blocks
do we need?
• Q: How many disk I/O’s
do we need to find a record
with value ‘50’?
• Q: Any other observations?

0

1
2

3

4

5

7

6

808

However, as we have more records, we need
overflow blocks

90

180

20

110

index file

10

100

30

57

40

85

150

50

140

70

160

0

1
2

3

4

5

7

6

808

270

360

450

540

190

280

370

550

Hash Tables

• Secondary storage hash tables are much like
main memory ones

• Recall basics:
– There are n buckets
– A hash function f(k) maps a key k to {0, 1, …, n-1}
– Store in bucket f(k) a pointer to record with key k

• Secondary storage: bucket = block, use
overflow blocks when needed

Extensible Hash Table

• Allows hash table (i.e., #buckets) to grow, to
avoid performance degradation

• Assume a hash function h that returns numbers in
{0, …, 2k – 1}

• Instead of using a different hash function for each
i = 1,…,k, we use the same hash function h

• How?
• The trick is to only look at first i most significant

bits 2i << 2k where 2i is #buckets n

Linear Hash Table

• Idea: extend only one entry at a time
• Use the i bits at the end of a hash value as a bucket ID
• Problem: #buckes n = no longer a power of 2
• Let i be #bits necessary to address n buckets; that is,

– 2i-1 < n <= 2i

• We don’t have a bucket for hash value v where n <= v <
2i

• If n <= k, change most significant bit of k from 1
to 0
– if i = 3, n = 5, k = 110 (= 6), entries for k go to the bucket for

010 (=2).

Linear Hash Table Example
• N=3

(01)00

(11)00

(10)10

i=2

00
01
10

(01)11 BIT FLIP

11

Because we do not have a
bucket for 11 yet.

(01)11

Linear Hash Table Example
• Insert 1000: overflow blocks…

(01)00

(11)00

(10)10

i=2

00
01
10

(01)11

(10)00

Linear Hash Tables
• Extension: independent on overflow blocks
• Extend n:=n+1 when average number of records

per block exceeds (say) 80%

Linear Hash Table Extension
• From n=3 to n=4,

(01)00

(11)00

(10)10

i=2

00
01
10

(01)11
(01)11

i=2

00
01
10

(10)10

(01)00

(11)00

11
Only need to touch
one block (which one ?)

Current number of
records r <= 1.6 * n.

(01)11

Linear Hash Table Extension

• From n=3 to n=4 finished

• Insert 1001
• Need extension from n=4

to n=5 (new bit)
(01)11

i=2

00
01
10

(10)10

(01)00

(11)00

11

(10)01

Linear Hash Table Extension

• From n=3 to n=4 finished

• Extension from n=4
to n=5 (new bit)

• No change to the data
structure is necessary

(1)001

(0)111

i=3

000
001
010

(1)010

011
100

This record stay s
here because no
bucket for ‘111’.

(0)100
(1)100

(0)100
(1)100

Split records
in this bucket

Components of Query Processor

SQL query

Query
compilation

Query
execution

query plan

storage

data

Metadata

Parse query

Select logical
query plan

Select
physical plan

SQL
query

query expression
tree

logical query
plan tree

physical query
plan tree

We must supply
detail regarding
how the query
is to be
executed.

Query
optimization

Outline

• Logical/physical operators
• Cost parameters
• One-pass algorithms
• Nested-loop joins
• Two-pass algorithms based on sorting

Logical v.s. Physical Operators

• Logical operators
– what they do
– e.g., union, selection, project, join, grouping

• Physical operators
– how they do it
– Principal methods: scanning, hashing, sorting, and

indexing
– Consider assumptions as to the amount of available

main memory
– e.g., nested loop join, sort-merge join, hash join, index

join

Physical Query Plans

Purchase Person

P.Buyer=Q.name

Q.City=‘urbana’

P.buyer

(Simple Nested
Loop Join)

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘urbana’

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘urbana’ σ

Query Plan:
• Logical tree
• Implementation
choice at every node

• Scheduling of
operations.

(Table scan) (Index scan)

Some operators are from relational
algebra, and others (e.g., scan, group)
are not.

The I/O Model of Computation

• In main memory algorithms, we care about CPU
time

• In databases, time is dominated by I/O cost
• Assumption: cost is given only by I/O
• Consequence: need to redesign certain algorithms

Cost Parameters

• Cost parameters
– M = number of blocks that fit in main memory
– B(R) = number of blocks holding R
– T(R) = number of tuples in R
– V(R,a) = number of distinct values of the attribute a

• Estimating the cost:
– Important in optimization (next topic)
– Compute I/O cost only
– We consider the cost to read the tables
– We don’t include the cost to write the result (because pipelining)

Scanning Tables

• The table is clustered (I.e. blocks consists only of
records from this table):
– Table-scan: if we know where the blocks are
– Index scan: if we have a sparse index to find the

blocks
• The table is unclustered (e.g. its records are

placed on blocks with those of other tables)
– May need one block read for each record

Scanning Clustered/Uncluserted Tables

Clustered table Unclustered table

2 Block Reads
(B(R) = 2) 4 Reads

(T(R) = 4)

Cost of the Scan Operator

• Clustered relation:
–Table scan: B(R)
– Index scan: B(R) ignoring the cost for

reading a index file
• Unclustered relation

–T(R)

We assume clustered
relations to estimate

the costs of other
physical operators.

Classification of Physical Operators
• One-pass algorithms

– Read the data only once from disk
– Usually, require at least one of the input relations fit

in main memory
• Nested-Loop Join algorithms

– Read one relation only once, while the other will be
read repeatedly from disk

• Two-pass algorithms
– First pass: read data from disk, process it, write it to

the disk
– Second pass: read the data for further processing

One pass algorithms

One-pass Algorithms

Selection σ(R), projection Π(R)
• Both are tuple-at-a-Time algorithms
• Cost: B(R)

Input
buffer

Output
buffer

Unary
operator

Disk

Read a block
R

B(R) blocks

One-pass Algorithms
Duplicate elimination δ(R)
• Need to keep a dictionary in memory:

– balanced search tree
– hash table
– etc

• Cost: B(R)
• Assumption: B(δ(R)) <= M

R

Input
buffer

Scan
before?

M-1 buffers
Output
buffer

Duplicate elimination δ(R)
when B(δ(R)) <= M

R Input
buffer Scan

before?

M-1 buffers
(Hash table)

Output
buffer

B(R) = 6
T(R) = 12

Disk

M = 8

58 47 3
12

h(x) = x mod 7

10
62

11

Cost: B(R)

0 1 2 3 4 5 6

8
7
5
3
6

11

5
4
4

12
10
2

5

5

8

8

4

4

7

7

Grouping: γcity, sum(price) (R)

• Need to keep a dictionary in memory
• Also store the sum(price) for each city
• Cost: B(R)
• Assumption: number of cities fits in memory

Binary Operations: R U S, R – S

• Assumption: min(B(R), B(S)) <= M
• Scan a smaller table of R and S into main

memory, then read the other one block by one
• Cost: B(R)+B(S)
• Example: R ∩ S

– Read S into M-1 buffers and build a search structure
– Read each block of R, and for each tuple t of R, see if

t is also in S.
– If so, copy t to the output, and if not, ignore t

Nested loop join

Tuple-based Nested Loop Joins
• Join R S

for each tuple r in R do
for each tuple s in S do

if r and s join then output (r,s)

• Cost: T(R) T(S), or T(R) B(S) if R is clustered

><

Block-based Nested Loop Joins

for each (M-1) blocks bs of S do
for each block br of R do

for each tuple s in bs do
for each tuple r in br do

if r and s join then output(r,s)

Block-based Nested Loop Joins

. . .
. . .

R & S

Hash table for block of S
(k < B-1 pages)

Input buffer for R Output buffer

. . .

Join Result

joined
tuples

Block-based Nested Loop Joins

• Cost:
– Read S once: cost B(S)
– Outer loop runs B(S)/(M-1) times, and each time

need to read R: costs B(S)B(R)/(M-1)
– Total cost: B(S) + B(S)B(R)/(M-1)

• Notice: it is better to iterate over the smaller
relation first

• S R: S=outer relation, R=inner relation><

