CS411
Database Systems

10: Indexing 2
11: Query Execution

Kazuhiro Minami

Revisiting Sequential Indexes on a Sequential

Data File

Main memory
buffer

Q: how many disk I/0O’s do we
need to get a record with key
value‘150°?

Q: If we want to avoid a binary
search on index blocks, what can
we do?

data file

Direct Addressing Approach

* Suppose that a key value
is a multiple of 5

« We add an entry for every
possible key value in index
« If we look up a record
with key ‘50,

« then, we can figure out
that we should look up the
5th index block

* Q: How many disk 1/0’s
do we need in this scheme?
* Q: Is there any problem?

Many more
index blocks!

Hashing-based Approach

« Consider a hash function
h(v) =vmod 9

« Pointer for value v goes to

h(v)th index block

« Note that we only store

only pointers to existing

records

« Q: How many index blocks

do we need?

* Q: How many disk 1/0’s

do we need to find a record

with value ‘50°?

* Q: Any other observations?

0o N o o A W N -2 O

index file

data file

HOWEVET, as we have more records, we need
overflow blocks

90 F 270 450
0 180 360 540
10 190 370
1 H—| -
2 [ET
-11(] -
3 1
RN
4 FT
.
5 =1
o]
6 1
]
;- 1)
o]
8 1]
index file

Hash Tables

« Secondary storage hash tables are much like
main memory ones

 Recall basics:
— There are n buckets
— A hash function f(k) maps a key k to {0, 1, ..., n-1}
— Store in bucket f(k) a pointer to record with key k

« Secondary storage: bucket = block, use
overflow blocks when needed

Extensible Hash Table

Allows hash table (i.e., #buckets) to grow, to
avoid performance degradation

Assume a hash function h that returns numbers in
{0, ..., 2%~ 1}

Instead of using a different hash function for each
i=1,...,k we use the same hash function h

How?

The trick is to only look at first i most significant
bits 2' << 2Xwhere 2! is #buckets n

Linear Hash Table

* Idea: extend only one entry at a time

» Use the i bits at the end of a hash value as a bucket ID

* Problem: #buckes n = no longer a power of 2

« Let i be #bits necessary to address n buckets; that is,
_ 2l < n<=2i

* We don’t have a bucket for hash value v where n <=v <
2I

« If n <=k, change most significant bit of k from 1
to0

— ifi=3,n=5 k=110 (= 6), entries for k go to the bucket for
010 (=2).

Linear Hash Table Example
« N=3

Linear Hash Table Example

* [nsert 1000: overflow blocks...

(01)00 []
i=2 (11)00
4 (11 BITFLIP |]
00 (01)00 [[oo []
01 (10)10] i=2 (100
10 / -
Ep—— (01)11
11 :_ T —loyn] 00 /
01 (10)10 []
Because we do not have a 10
bucket for 11 yet.
Linear Hash Tables Linear Hash Table Extension
« Extension: independent on overflow blocks * From n=3to n=4, g
Current number of
 Extend n:=n+1 when average number of records records r <= 1.6 * n.
per block exceeds (say) 80%
. (01)00 J (01)00 J
i=2 / (11)00 (11)00
00 1 - oo 1
01 =2
10 e = @mo | T
00 /|
01 =
Only need to touch 10 oD V/ -
one block (which one ?) 11

Linear Hash Table Extension

* From n=3 to n=4 finished

Linear Hash Table Extension

* From n=3 to n=4 finished

(01)00 [] (0)100 []
(11)00 Split records (1)100
in this bucket a
« Insert 1001 = a0yt a » Extension fra - (oot
« Need extension from n=4 om0 n to n=5 (new bit) — u
to n=5 (new bit) 00 * No change to the dat@)
(1)[1) o] structure is necessary 001 [Lemr |]
.—‘/OJ_D, ——
1 This record stay s
here because no r (0)100 []
bucket for ‘111" 100L_— (1)100
Components of Query Processor Outline
SQL query SQL « Logical/physical operators
o tiery
* Cost parameters
Query B i AN * One-pass algorithms
Metadata compilation | Select logical . .
¢ We must supply query plan Query 4 Nested-loop Joins
detail di f - optimization . .
Que hi;&,f:%ﬂe:;‘g o tee” l A « Two-pass algorithms based on sorting
execu is to be

Select
ical plan

yteputed—{ —physi |
physical query ||
plan tree -
e

Logical v.s. Physical Operators

« Logical operators
— what they do
- e.g., union, selection, project, join, grouping
« Physical operators
— how they do it
— Principal methods: scanning, hashing, sorting, and
indexing
— Consider assumptions as to the amount of available
main memory
— e.g., nested loop join, sort-merge join, hash join, index
join

Physical Query Plans

SELECT P.buyer T

FROM Purchase P, Person Q

WHERE P.buyer=Q.name AND
Q.city="urbana’

P.buyer

GQ‘City:‘urbana‘

Query Plan: o
* Logical tree P Buyer=Q.name
« Implementation ™~
choice at every node
« Scheduling of
operations.

(Simple Nested
Loop Join)

Purchase Person

(Table scan) (Index scan)

Some operators are from relational
algebra, and others (e.g., scan, group)
are not.

The 1/0 Model of Computation

* In main memory algorithms, we care about CPU
time

In databases, time is dominated by 1/O cost

« Assumption: cost is given only by I/O

» Consequence: need to redesign certain algorithms

Cost Parameters

» Cost parameters
— M = number of blocks that fit in main memory
— B(R) = number of blocks holding R
— T(R) = number of tuples in R
— V(R,a) = number of distinct values of the attribute a
¢ Estimating the cost:
— Important in optimization (next topic)
— Compute 1/O cost only
— We consider the cost to read the tables
— We don’t include the cost to write the result (because pipelining)

Scanning Tables

« The table is clustered (l.e. blocks consists only of
records from this table):
— Table-scan: if we know where the blocks are
— Index scan: if we have a sparse index to find the

blocks

 The table is unclustered (e.g. its records are
placed on blocks with those of other tables)
— May need one block read for each record

Scanning Clustered/Uncluserted Tables

2 Block Reads
— _ —\ 4 Reads
B(R) =2
(BR=2 (TR =4)

Clustered table Unclustered table

Cost of the Scan Operator

We assume clustered
relations to estimate

* Clustered relation:——— the costs of other

—_ physical operators.

—Table scan: B(R) 1

—Index scan: B(R) ignoring the cost for
reading a index file

» Unclustered relation
-T(R)

Classification of Physical Operators

» One-pass algorithms
— Read the data only once from disk
— Usually, require at least one of the input relations fit
in main memory
 Nested-Loop Join algorithms
— Read one relation only once, while the other will be
read repeatedly from disk
» Two-pass algorithms

— First pass: read data from disk, process it, write it to
the disk
— Second pass: read the data for further processing

One pass algorithms

One-pass Algorithms

Selection o(R), projection TT(R)
« Both are tuple-at-a-Time algorithms
¢ Cost: B(R)

Input | | Unary | | Output

buffer operator buffer

Read a block B(R) blocks
Disk

One-pass Algorithms

Duplicate elimination 3(R)
» Need to keep a dictionary in memory:
— balanced search tree
— hash table
—etc
e Cost: B(R)
¢ Assumption: B(6(R)) <=M

Scan
before?

Input
buffer

Output
M-1 buffers buffer

Duplicate elimination &(R)
when B(6(R)) <=M

Cost: B(R)
R butter

4 Scan
before?
@ 5 /

12i 3

10 6 0123456 |8

2 11 71812/3/4|5/6| Output

101112 buffer

B(R) =6 M-1 buffers
T(R) =12 (Hash table) M=8

Disk h(x) =xmod 7

Grouping: ycity, sum(price) (R)

Need to keep a dictionary in memory

Also store the sum(price) for each city

Cost: B(R)

Assumption: number of cities fits in memory

Binary Operations: RU S, R-S

* Assumption: min(B(R), B(S)) <=M
 Scan a smaller table of R and S into main
memory, then read the other one block by one
 Cost: B(R)+B(S)
o Example:R N S
— Read S into M-1 buffers and build a search structure

— Read each block of R, and for each tuple t of R, see if
tisalsoinS.

— If so, copy t to the output, and if not, ignore t

Nested loop join

Tuple-based Nested Loop Joins
e JoinR><'S

for each tuple rin R do
for each tuple s in S do

if r and s join then output (r,s)

e Cost: T(R) T(S), or T(R) B(S) if R is clustered

Block-based Nested Loop Joins

for each (M-1) blocks bs of S do
for each block br of R do
for each tuple s in bs do
for each tuple r in br do
if r and s join then output(r,s)

Block-based Nested Loop Joins

Join Result

Hash table for block of S
(k < B-1 pages)

Input buffer for R Output buffer

Block-based Nested Loop Joins

» Cost:
— Read S once: cost B(S)
— Outer loop runs B(S)/(M-1) times, and each time
need to read R: costs B(S)B(R)/(M-1)
— Total cost: B(S) + B(S)B(R)/(M-1)
 Notice: it is better to iterate over the smaller
relation first

* S ><R: S=outer relation, R=inner relation

