CS411
Database Systems

15: Final Review

Kazuhiro Minami

Final exam

7:00pm-10:00pm on Thursday, December 17
1404 Siebel Center

* Bring UIUC photoid, pen, pencil, and eraser

* Closed book, no notes
* Don't cheat

Final exam (Subject to changes)

10 - 15 True-False questions
 Data Storage

* Indexes

 Query execution

* Query optimization
 Logging & Recovery

» Concurrency control

Concurrency Control

Concurrency Control — Basic concepts

* What is a transaction?

» Which actions do we consider in a transaction?
» How to represent a transaction?

« What is a schedule?

* What is the goal of concurrency control?

e What is a serial schedule?

» What is a serializable schedule?

« What is a conflict-serializable schedule?

« What are conflicting swaps?

* How to determine whether a schedule is conflict-
serializable?

How to draw a precedence graph? Why
the precedence-graph test works?

o 11(A); rp(A);r3(B);wy (A);ry(C);r(B);w,(B);w; (C)

o 11(A); W,(B);ry(B);w,(C);r5(C)swa(A);

Enforcing Serializability by Locks

What is a lock?

What is a lock table? What kind of information is stored
there?

What is the consistency of transactions?

What is the legality of transactions?

What is the notations for actions of locking and
unlocking?

What is the job of the locking scheduler?

What is the two-phase locking (2PL) condition? What
type of serializable schedules are produced with this
approach?

Two-phase locked schedule

Ty: ry(A);wy(B);
T, 15(A);W,(A);W,(B);

Q1: Make T, consistent and 2PL by adding lock and
unlock actions
Q2: Do the same for T,

Q3: Give an example of legal schedule of the above
modified T, and T,

Enforcing Serializability with Timestamps

* What is a timestamp?
« When is a timestamp assigned to a transaction?

» What’s the notation for transaction T’s
timestamp?

» What information do we maintain for each
database element X?

» What type of serializable schedules are produced
with this approach?

» How the timestamp-based approach solve the
problem of “dirty” read? .

Transaction T is aborted if

1. T tries to read data written by transaction U,
which started later than T
- Q: Why?
— Q: How to detect this situation?

1. T tries to write data to database element X,
which is already read by transaction U, which
started later than T
- Q: Why?

— Q: How to detect this situation?

10

Prevention of Dirty Read

* How to prevent transaction T from reading data
written by uncommitted transaction U?

Thomas Write Rule

» Why can we skip transaction T’s write on element X,
which is already modified by transaction U?

< What if there is another transaction V starting after T
but before U?

o What if V starts after U?

Uwrites X T writes X

I

start start v

Concurrency Control by Timestamps

 Tell me what happens as each executes
= sty; sty; 11(A); 15(B); Wy(A); wy(B)

T1 T2 A B
100 200 RT=0 RT=0
WT=0 WT=0
n(A) RT=100
r,(B) RT=200

W,(A) WT=200
w;(B)

Write too late; need to roll back.

Concurrency Control by Timestamps

« Tell me what happens as each executes
= sty; 11(A); sty; Wo(B); 15(A); wy(B)

T1 T2 A B
100 200 RT=0 RT=0
WT=0 WT=0
r(A) RT=100
W,(B) WT=200

,(A) RT=200
w;y(B)

OK, but needs to wait until T2 commits

Concurrency Control
by Validation

Concurrency Control by Validation

Another type of optimistic concurrency control

» Maintain a record of what active transactions are
doing

Just before a transaction starts to write, it goes
through a “validation phase”

If a there is a risk of physically unrealizable
behavior, the transaction is rolled back

Validation-based Scheduler

» Keep track of each transaction T’s

— Read set RS(T): the set of elements T read

— Write set WS(T): the set of elements T write
¢ Execute transactions in three phases:

1. Read. T reads all the elements in RS(T)

2. Validate. Validate T by comparing its RS(T) an
WS(T) with those in other transactions. If the
validation fails, T is rolled back

3. Write. T writes its values for the elements in WS(T)

Scheduler Maintains Information Sets

» START: the set of transactions that have started,
but not yet completed validation. For each T,
maintain (T, START(T))

» VAL: the set of transactions that have been
validated, but not yet finished. For each T,
maintain (T, START(T), VAL(T))

 FIN: the set of transaction that have completed.
For each T, maintain (T, START(T), VAL(T),
FIN(T))

Assumed Serial Schedule for Validation

« We may think of each transaction that
successfully validates as executing at the moment
that it validates

Actual

schedule 'T—W“TF'—'T—'W
T U _
validates validates V validates

T

V validates

Serial

schedule]
T U
validates validates

Potential Violation of the Serial Order

¢ Transactions T and U such that
— U has validated
—START(T) < FIN(U)
—RS(T) n WS(U) is not empty

T reads X)
U writes X

v

U start T start U validated T validating

Another Potential Violation
of the Serial Order
e Two transactions T and U such that
—-Uisin VAL
—VAL(T) < FIN(U)
—WS(T) n WS(U) is not empty

T writes X .
U writes X

]

U validated T validating U finish

Validation Rules

To validate a transaction T,

1. Check that RS(T) n WS(U) is an empty set for any
validated U and START(T) < FIN(U)

2. Check that WS(T) n WS(U) is an empty set for any
validated U that did not finish before T validated, i.e.,
if VAL(T) < FIN(U)

Example Problem

In the following sequence of events, tell what happens when
each sequence i essed by a validation-based scheduler.

RS={B,C}
T2 WS={A}

C,D); V3; W1(A); V2; W2(A); W3(B);

Example Problem

In the following sequence of events, tell what happens when

each sequence is processed bv a validation-based scheduler.
Write

too late!

R1(AB); R2(B,C); V1; R F WL(A); V2; W2(A); W3(B);

RS={B,C}
T2 WS={A}

RS={A B}

T3’s write
% D}

Ws={B}

Example Problem

In the following sequence of events, tell what happens when
each sequence is processed by a validation-based scheduler.

RS={A,B} RS={B)C}
T1 WS={A} T2 WS={A}

=l

N—

T3 Rs={c,D}
Ws={B}

R1(A,B); R2(B,C); V1; R3(C,D); V3; W1(A); V2; W2(A); W3(B);

Comparison of Three Mechanisms

« Storage utilization
— Locks: space in the lock table is proportional to the
number of database elements locked
— Timestamps: Read and write times for recently
accessed database elements

— Validation: timestamps and read/write sets for each
active transaction, plus a few more transactions that
finished after some currently active transaction began

Comparison of Three Mechanisms
¢ Delay

— Locking delays transactions but avoids rollbacks,
even when interaction is high

— If interference is low, neither timestamps nor
validation will cause many transactions

— When a rollback is necessary, timestamps catch some
problems earlier than validation

Summary

Timestamping

Two-Phase
Locking

Two-Phase
Locking

Conflict-serializable
Schedules

Serializable Schedules

28

Storage: T/F Questions

Secondary storage is volatile

Spanned records refer to records that are longer than a single block
and therefore are broken into fragments

When we store multiple fixed-length records in a block, we do not
need to have a record header for each record.

A block header always contains pointers to each record in the
block

When we insert a new record into a relation, we sometimes need
to create an overflow block even if records in that relation are not
sorted.

When a client requests a record that contains a BLOB, the
database server returns the entire record at a time

Index: T/F Questions

We can only use a dense index if the data file is sorted
by the search key.

When we add a second level of index, the second-level
index must be dense.

B-trees sometimes need overflow blocks.
B-trees can be used to perform ranged queries.
Extensible hash tables sometimes have overflow blocks.

In a linear hash table, each data block has the “nub”
indicating how many bits of the hash function’s
sequence is used.

Query execution

» Cost parameters

Sort methods

Hash methods

Index method

* 1 phase vs. 2 phase

* Pipelining vs. materialization
* Estimation

How to do joins

Know the major ways to do joins
— hash join
— simple-sort-based join
— sort join (merge join)
— indexed join
— nested loop join
and when to pick one over the other

Make sure to understand how each algorithm works, its required
memory, and 1/O cost

True/False questions

« Duplicate elimination is a physical operator.

e The cost of scanning a unclustered relation R is B(R)

« A selection operator can be always executed with a one-
pass algorithm.

* We can sort any number of blocks with 2-way merge
sort using memory buffer of size M.

* When we sort two relations R and S with sort-merge-
join, its total cost would be 5B(R) + 5B(S).

« Two-pass hash-based join algorithm has a size
requirement only on the smaller of the two input
relations

Query Optimization

Do you know how to apply algebraic
laws to get a better logical plan?

Do you know how to perform a cost-
based optimization on a logical plan?

Do you know how to convert a logical
plan to a physical plan?

Do you know how to estimate the size of
an intermediate operation?

Logging & Recovery

What'’s the correctness principle?

What are primitive four operations of transactions?

How does undo logging work?

— Log records

— Undo-logging rules

— Recovery procedure

How does redo logging work?

How does undo/redo logging work?

What is a checkpoint?

What is a nonquiescent checkpoint?

Do you know when <END CKPT> is added in each method?
Do you know recovery procedures with a checkpointed log?
What are advantages and disadvantages of each method?

