
CS411
Database Systems

Kazuhiro Minami

15: Final Review

Final exam

7:00pm-10:00pm on Thursday, December 17
1404 Siebel Center

• Bring UIUC photoid, pen, pencil, and eraser

• Closed book, no notes
• Don't cheat

Final exam (Subject to changes)

• 10 - 15 True-False questions
• Data Storage
• Indexes
• Query execution
• Query optimization
• Logging & Recovery
• Concurrency control

Concurrency Control

Concurrency Control – Basic concepts
• What is a transaction?
• Which actions do we consider in a transaction?
• How to represent a transaction?
• What is a schedule?
• What is the goal of concurrency control?
• What is a serial schedule?
• What is a serializable schedule?
• What is a conflict-serializable schedule?
• What are conflicting swaps?
• How to determine whether a schedule is conflict-

serializable?

How to draw a precedence graph? Why
the precedence-graph test works?

• r1(A); r2(A);r3(B);w1(A);r2(C);r2(B);w2(B);w1(C)

• r1(A); w1(B);r2(B);w2(C);r3(C);w3(A);

6

Enforcing Serializability by Locks
• What is a lock?
• What is a lock table? What kind of information is stored

there?
• What is the consistency of transactions?
• What is the legality of transactions?
• What is the notations for actions of locking and

unlocking?
• What is the job of the locking scheduler?
• What is the two-phase locking (2PL) condition? What

type of serializable schedules are produced with this
approach?

7

Two-phase locked schedule
• T1: r1(A);w1(B);
• T2: r2(A);w2(A);w2(B);

• Q1: Make T1 consistent and 2PL by adding lock and
unlock actions

• Q2: Do the same for T2

• Q3: Give an example of legal schedule of the above
modified T1 and T2

8

Enforcing Serializability with Timestamps
• What is a timestamp?
• When is a timestamp assigned to a transaction?
• What’s the notation for transaction T’s

timestamp?
• What information do we maintain for each

database element X?
• What type of serializable schedules are produced

with this approach?
• How the timestamp-based approach solve the

problem of “dirty” read? 9

Transaction T is aborted if
1. T tries to read data written by transaction U,

which started later than T
– Q: Why?
– Q: How to detect this situation?

1. T tries to write data to database element X,
which is already read by transaction U, which
started later than T
– Q: Why?
– Q: How to detect this situation?

10

Prevention of Dirty Read
• How to prevent transaction T from reading data

written by uncommitted transaction U?

11

Thomas Write Rule
• Why can we skip transaction T’s write on element X,

which is already modified by transaction U?
• What if there is another transaction V starting after T

but before U?
• What if V starts after U?

12
T
start

U
start

U writes X T writes X

Concurrency Control by Timestamps
• Tell me what happens as each executes

– st1; st2; r1(A); r2(B); w2(A); w1(B)

T1 T2 A B
RT=0 RT=0
WT=0 WT=0

100 200

r1(A)
r2(B)

RT=100
RT=200

w2(A) WT=200
w1(B)

Write too late; need to roll back.

Concurrency Control by Timestamps
• Tell me what happens as each executes

– st1; r1(A); st2; w2(B); r2(A); w1(B)

T1 T2 A B
RT=0 RT=0
WT=0 WT=0

100 200

r1(A)

r2(A)

RT=100
WT=200w2(B)

RT=200
w1(B)

OK, but needs to wait until T2 commits

Concurrency Control
by Validation

Concurrency Control by Validation

• Another type of optimistic concurrency control
• Maintain a record of what active transactions are

doing
• Just before a transaction starts to write, it goes

through a “validation phase”
• If a there is a risk of physically unrealizable

behavior, the transaction is rolled back

Validation-based Scheduler

• Keep track of each transaction T’s
– Read set RS(T): the set of elements T read
– Write set WS(T): the set of elements T write

• Execute transactions in three phases:
1. Read. T reads all the elements in RS(T)
2. Validate. Validate T by comparing its RS(T) an

WS(T) with those in other transactions. If the
validation fails, T is rolled back

3. Write. T writes its values for the elements in WS(T)

Scheduler Maintains Information Sets
• START: the set of transactions that have started,

but not yet completed validation. For each T,
maintain (T, START(T))

• VAL: the set of transactions that have been
validated, but not yet finished. For each T,
maintain (T, START(T), VAL(T))

• FIN: the set of transaction that have completed.
For each T, maintain (T, START(T), VAL(T),
FIN(T))

Assumed Serial Schedule for Validation

• We may think of each transaction that
successfully validates as executing at the moment
that it validates

T
validates

U
validates V validates

Actual
schedule

Serial
schedule

T
validates

U
validates V validates

Potential Violation of the Serial Order
• Transactions T and U such that

– U has validated
– START(T) < FIN(U)
– RS(T) ∩ WS(U) is not empty

U start T start U validated T validating

T reads X
U writes X

Another Potential Violation
of the Serial Order

• Two transactions T and U such that
– U is in VAL
– VAL(T) < FIN(U)
– WS(T) ∩ WS(U) is not empty

T validating U finish

T writes X
U writes X

U validated

Validation Rules
To validate a transaction T,
1. Check that RS(T) ∩ WS(U) is an empty set for any

validated U and START(T) < FIN(U)
2. Check that WS(T) ∩ WS(U) is an empty set for any

validated U that did not finish before T validated, i.e.,
if VAL(T) < FIN(U)

Example Problem
In the following sequence of events, tell what happens when
each sequence is processed by a validation-based scheduler.

R1(A,B); R2(B,C); V1; R3(C,D); V3; W1(A); V2; W2(A); W3(B);

T1 T2

T3

RS={B,C}
WS={A}

RS={C,D}
WS={B}

RS={A,B}
WS={A}

T3’s read

T1’s write

Write
too late!

Example Problem
In the following sequence of events, tell what happens when
each sequence is processed by a validation-based scheduler.

R1(A,B); R2(B,C); V1; R3(C,D); V3; W1(A); V2; W2(A); W3(B);

T1 T2

T3

RS={A,B}
WS={A}

RS={B,C}
WS={A}

RS={C,D}
WS={B}

T1’s write

T3’s write

Write
too late!

Example Problem
In the following sequence of events, tell what happens when
each sequence is processed by a validation-based scheduler.

R1(A,B); R2(B,C); V1; R3(C,D); V3; W1(A); V2; W2(A); W3(B);

T1 T2

T3

RS={A,B}
WS={A}

RS={B,C}
WS={A}

RS={C,D}
WS={B}

Comparison of Three Mechanisms
• Storage utilization

– Locks: space in the lock table is proportional to the
number of database elements locked

– Timestamps: Read and write times for recently
accessed database elements

– Validation: timestamps and read/write sets for each
active transaction, plus a few more transactions that
finished after some currently active transaction began

Comparison of Three Mechanisms
• Delay

– Locking delays transactions but avoids rollbacks,
even when interaction is high

– If interference is low, neither timestamps nor
validation will cause many transactions

– When a rollback is necessary, timestamps catch some
problems earlier than validation

Summary

28

Serial
Schedules

Serializable Schedules

Conflict-serializable
Schedules

Two-Phase
Locking

Timestamping Two-Phase
Locking

Storage: T/F Questions

• Secondary storage is volatile
• Spanned records refer to records that are longer than a single block

and therefore are broken into fragments
• When we store multiple fixed-length records in a block, we do not

need to have a record header for each record.
• A block header always contains pointers to each record in the

block
• When we insert a new record into a relation, we sometimes need

to create an overflow block even if records in that relation are not
sorted.

• When a client requests a record that contains a BLOB, the
database server returns the entire record at a time

Index: T/F Questions

• We can only use a dense index if the data file is sorted
by the search key.

• When we add a second level of index, the second-level
index must be dense.

• B-trees sometimes need overflow blocks.
• B-trees can be used to perform ranged queries.
• Extensible hash tables sometimes have overflow blocks.
• In a linear hash table, each data block has the “nub”

indicating how many bits of the hash function’s
sequence is used.

Query execution

• Cost parameters
• Sort methods
• Hash methods
• Index method
• 1 phase vs. 2 phase
• Pipelining vs. materialization
• Estimation

How to do joins

Know the major ways to do joins
– hash join
– simple-sort-based join
– sort join (merge join)
– indexed join
– nested loop join

and when to pick one over the other

Make sure to understand how each algorithm works, its required
memory, and I/O cost

True/False questions

• Duplicate elimination is a physical operator.
• The cost of scanning a unclustered relation R is B(R)
• A selection operator can be always executed with a one-

pass algorithm.
• We can sort any number of blocks with 2-way merge

sort using memory buffer of size M.
• When we sort two relations R and S with sort-merge-

join, its total cost would be 5B(R) + 5B(S).
• Two-pass hash-based join algorithm has a size

requirement only on the smaller of the two input
relations

Query Optimization

• Do you know how to apply algebraic
laws to get a better logical plan?

• Do you know how to perform a cost-
based optimization on a logical plan?

• Do you know how to convert a logical
plan to a physical plan?

• Do you know how to estimate the size of
an intermediate operation?

Logging & Recovery
• What’s the correctness principle?
• What are primitive four operations of transactions?
• How does undo logging work?

– Log records
– Undo-logging rules
– Recovery procedure

• How does redo logging work?
• How does undo/redo logging work?
• What is a checkpoint?
• What is a nonquiescent checkpoint?
• Do you know when <END CKPT> is added in each method?
• Do you know recovery procedures with a checkpointed log?
• What are advantages and disadvantages of each method?

