
CS411
Database Systems

Kazuhiro Minami

16: Final Review Session

Concurrency Control

Concurrency Control – Basic concepts
• What is a transaction?
• Which actions do we consider in a transaction?
• How to represent a transaction?
• What is a schedule?
• What is the goal of concurrency control?
• What is a serial schedule?
• What is a serializable schedule?
• What is a conflict-serializable schedule?
• What are conflicting swaps?
• How to determine whether a schedule is conflict-

serializable?

Basic Concepts on Locks
• What is a lock?
• What is a lock table? What kind of information is stored

there?
• What is the consistency of transactions?
• What is the legality of transactions?
• What is the notations for actions of locking and

unlocking?
• What is the job of the locking scheduler?
• What is the two-phase locking (2PL) condition? What

type of serializable schedules are produced with this
approach?

4

Two-phase locked schedule
T1: r1(A);w1(B); T2: r2(A);w2(A);w2(B);

1. Make T1 and T2 consistent, but not 2PL by adding lock and unlock actions
2. Give a legal, but not serializable schedule of T1 and T2 in question 1
3. Make T1 and T2 consistent and 2PL by adding lock and unlock actions
4. Give a legal schedule of T1 and T2 in question 3

5

Concepts on Timestamp-based
Concurrency Control

• What is a timestamp?
• When is a timestamp assigned to a transaction?
• What’s the notation for transaction T’s timestamp?
• What information do we maintain for each database

element X?
• What type of serializable schedules are produced with

this approach?
• How the timestamp-based approach solve the problem of

“dirty” read?

6

Assumed Serial Schedule

• Conflict serializable schedule that is equivalent to
a serial schedule in which the timestamp order of
transactions is the order to execute them

T
starts

U
starts

V
starts

Actual
schedule

T
starts

U
starts

V
starts

Serial
schedule

How to detect T’s reading X too late?

T start U start

U write X
T read X

How can you detect T’s writing to late?

9

T start U start

U read X T write X

Prevention of Dirty Read
• How to prevent transaction T from reading data

written by uncommitted transaction U?
• We want T to wait until U commits

10

T
start

U
start

U write X

T read X

U
aborts

Thomas Write Rule
• Why can we skip transaction T’s write on element X,

which is already modified by transaction U?
• What if there is another transaction V starting after T

but before U?
• What if V starts after U?

11
T
start

U
start

U writes X T writes X

Another Problem with Dirty Data

T
start

U
start

U writes X
T writes X

U aborts

• Thomas write rule: T’s write can be skipped if

• But, we want T to wait until U commits

T
commits

TS(T) < WT(X)

We need to
restore the

previous value
for X, but…

Concurrency Control by Timestamps
• Tell me what happens as each executes

– st1; r1(A); st2; w2(B); r2(A); w1(B)

T1 T2 A B
RT=0 RT=0
WT=0 WT=0

100 200

r1(A)

r2(A)

RT=100
WT=200w2(B)

RT=200
w1(B)

OK, but needs to wait until T2 commits

Concurrency Control
by Validation

Concurrency Control by Validation
• Another type of optimistic concurrency control
• Maintain a record of what active transactions are

doing
• Just before a transaction starts to write, it goes

through a “validation phase”
• If a there is a risk of physically unrealizable

behavior, the transaction is rolled back

Read actions Write actionsValidation
Transaction

T

Validation-based Scheduler

• Keep track of each transaction T’s
– Read set RS(T): the set of elements T read
– Write set WS(T): the set of elements T write

• Execute transactions in three phases:
1. Read. T reads all the elements in RS(T)
2. Validate. Validate T by comparing its RS(T) an

WS(T) with those in other transactions. If the
validation fails, T is rolled back

3. Write. T writes its values for the elements in WS(T)

Assumed Serial Schedule for Validation

• We may think of each transaction that
successfully validates as executing at the moment
that it validates

T
validates

U
validates V validates

Actual
schedule

Serial
schedule

T
validates

U
validates V validates

Potential Violation: Read too Early
• Transactions T and U such that

1. U has validated
2. START(T) < FIN(U)
3. RS(T) ∩ WS(U) is not empty

U start T start U validated T validating

T reads X
U writes X

Another Potential Violation: Write too Early

• Two transactions T and U such that
– U is in VAL
– VAL(T) < FIN(U)
– WS(T) ∩ WS(U) is not empty

T validating U finish

T writes X
U writes X

U validated

Validation Rules

To validate a transaction T,
1. Check that RS(T) ∩ WS(U) is an empty set for any

validated U and START(T) < FIN(U)
2. Check that WS(T) ∩ WS(U) is an empty set for any

validated U that did not finish before T validated, i.e.,
if VAL(T) < FIN(U)

Example Problem
In the following sequence of events, tell what happens when
each sequence is processed by a validation-based scheduler.

R1(A,B); R2(B,C); V1; R3(C,D); V3; W1(A); V2; W2(A); W3(B);

T1 T2

T3

RS={B,C}
WS={A}

RS={C,D}
WS={B}

RS={A,B}
WS={A}

Storage

• How to store records in a block?
– Fixed-length record
– Variable-length record

• What extra information do we need to store a record in a
block?

• What information is stored in a block header?
• What information is stored in a record header?
• In which situations do we create an overflow block?

Indexing
• Do you know which types of index can we use in different situations?

– Dense/Sparse
– Secondary (unclustered)
– Multi-level index

• B-tree
– Do you understand the structure of a B-tree?

• Root node; internal node; leaf node
– How to find/insert/delete a record?

• Dynamic hash table
– Do you understand the structure of a dynamic hash table?

• Pointer array, data bucket, nub, etc.
– How to find/insert/delete a record?
– What are differences from static hash tables?
– What are different between extensible and linear hash tables?

Query execution

• What are cost parameters?
• Can you describe how different join

algorithms work?
– Nested loop join; sort-based join; hash-based join

• Do you know the memory requirement of
each algorithm?

• Do you know in which situation we can use a
simple-sort join or sort-merge-join?

Query Optimization

• Do you know how to apply algebraic laws to
get a better logical plan?

• Do you know how to perform a cost-based
optimization on a logical plan?
– Dynamic programming
– Left-deep or Right-deep join trees

• Do you know how to estimate the size of an
intermediate operation?
– Selection
– Join

Logging & Recovery
• What’s the correctness principle?
• What are primitive four operations of transactions?
• How does undo logging work?

– Log records
– Undo-logging rules
– Recovery procedure

• How does redo logging work?
• How does undo/redo logging work?
• What is a checkpoint?
• What is a nonquiescent checkpoint?
• Do you know when <END CKPT> is added in each method?
• Do you know recovery procedures with a checkpointed log?
• What are advantages and disadvantages of each method?

