CS411
Database Systems

16: Final Review Session

Kazuhiro Minami

Concurrency Control

Concurrency Control — Basic concepts

< What is a transaction?

« Which actions do we consider in a transaction?
* How to represent a transaction?

* What is a schedule?

e What is the goal of concurrency control?

e What is a serial schedule?

« What is a serializable schedule?

« What is a conflict-serializable schedule?

« What are conflicting swaps?

* How to determine whether a schedule is conflict-
serializable?

Basic Concepts on Locks

What is a lock?

What is a lock table? What kind of information is stored
there?

What is the consistency of transactions?

What is the legality of transactions?

What is the notations for actions of locking and
unlocking?

What is the job of the locking scheduler?

What is the two-phase locking (2PL) condition? What
type of serializable schedules are produced with this
approach?

Two-phase locked schedule

Ty ry(A)wy(B); To: 1p(A);Wo(A);w,(B);

. Make T, and T, consistent, but not 2PL by adding lock and unlock actions
. Give alegal, but not serializable schedule of T, and T, in question 1

. Make T, and T, consistent and 2PL by adding lock and unlock actions

. Give alegal schedule of T, and T, in question 3

B w NP

Concepts on Timestamp-based
Concurrency Control

What is a timestamp?

When is a timestamp assigned to a transaction?

What’s the notation for transaction T’s timestamp?
What information do we maintain for each database
element X?

What type of serializable schedules are produced with
this approach?

How the timestamp-based approach solve the problem of
“dirty” read?

Assumed Serial Schedule

« Conflict serializable schedule that is equivalent to
a serial schedule in which the timestamp order of
transactions is the order to execute them

Actual jH—QTQO—O—QT&O“—’
schedule u V;

starts starts starts

Serial o
schedule I U v [

starts starts starts

e

How to detect T’s reading X too late?

U write X
T read X

T start U start

How can you detect T’s writing to late?

Uread X T write X

N
R

T start U start

Prevention of Dirty Read

» How to prevent transaction T from reading data
written by uncommitted transaction U?

* We want T to wait until U commits

U write X
T read X
J T
start start U
aborts

10

Thomas Write Rule

» Why can we skip transaction T’s write on element X,
which is already modified by transaction U?

« What if there is another transaction V starting after T
but before U?

* What if V starts after U?

Uwrites X T writes X

I

start start

Another Problem with Dirty Data
» Thomas write rule: T’s write can be skipped if
TS(T) < WT(X)
» But, we want T to wait until U commits

U writes X
T writes X
f— We need to
I I I T restore the
T §] T previous value
stat start commits U 00T — for X, but...

Concurrency Control by Timestamps

 Tell me what happens as each executes
= sty; 11(A); sty; Wy(B); 15(A); wy(B)

T1 T2 A B
100 200 RT=0 RT=0
WT=0 WT=0
n(A) RT=100
W,(B) WT=200

r,(A) RT=200
w,(B)

OK, but needs to wait until T2 commits

Concurrency Control
by Validation

Concurrency Control by Validation

Another type of optimistic concurrency control
Maintain a record of what active transactions are
doing

Just before a transaction starts to write, it goes
through a “validation phase”

If a there is a risk of physically unrealizable
behavior, the transaction is rolled back

Read actions \/alidation Write actions

Ll

Transaction

N A A A S

Validation-based Scheduler

Keep track of each transaction T’s
— Read set RS(T): the set of elements T read
— Write set WS(T): the set of elements T write
Execute transactions in three phases:
1. Read. T reads all the elements in RS(T)

2. Validate. Validate T by comparing its RS(T) an
WS(T) with those in other transactions. If the
validation fails, T is rolled back

3. Write. T writes its values for the elements in WS(T)

Assumed Serial Schedule for Validation Potential Violation: Read too Early
« We may think of each transaction that Transactions T and U such that
successfully validates as executing at the moment 1. U has validated-
that it validates 2. START(T) < FIN(U)
Actual 3. ngl“l') N WS(U) is not empty
sehedule T U V validates *e
validates validates read)
i U writes X
Serial P _
schedule [r"' T'
T U . '
. . V validates ! f I, Fatl
validates validates U start T start U validated T validating
Another Potential Violation: Write too Early Validation Rules
» Two transactions T and U such that To validate a transaction T,
-Uisin VAL 1. Check that RS(T) n WS(U) is an empty set for any

validated U and START(T) < FIN(U)

2. Check that WS(T) n WS(U) is an empty set for any
validated U that did not finish before T validated, i.e.,
if VAL(T) < FIN(U)

~VAL(T) < FIN(U)

- WS(T) 0 WS(U) is not empty

T writes X

writes X

T I

U validated T validating U finish

Example Problem

In the following sequence of events, tell what happens when
each sequence is processed by a validation-based scheduler.

R1(A,B); R2(B,C); V1; R3(C,D); V3; W1(A); V2; W2(A); W3(B);

RS={A,B} RS={B,C}
T1 WS={A} T2 WS={A}

T3 Rs={CD}
ws={B}

Storage

How to store records in a block?
— Fixed-length record
— Variable-length record

What extra information do we need to store a record in a
block?

What information is stored in a block header?
What information is stored in a record header?
In which situations do we create an overflow block?

Indexing

Do you know which types of index can we use in different situations?
— Dense/Sparse
— Secondary (unclustered)
— Multi-level index
e B-tree
— Do you understand the structure of a B-tree?
« Root node; internal node; leaf node
— How to find/insert/delete a record?
¢ Dynamic hash table
— Do you understand the structure of a dynamic hash table?
« Pointer array, data bucket, nub, etc.
— How to find/insert/delete a record?
— What are differences from static hash tables?
— What are different between extensible and linear hash tables?

Query execution

» What are cost parameters?
« Can you describe how different join

algorithms work?
— Nested loop join; sort-based join; hash-based join

Do you know the memory requirement of

each algorithm?

Do you know in which situation we can use a

simple-sort join or sort-merge-join?

Query Optimization Logging & Recovery

¢ What’s the correctness principle?

* Do you know how to apply algebraic laws to « What are primitive four operations of transactions?
get a better logical plan? « How does undo logging work?
* Do you know how to perform a cost-based = Log records
. . . — Undo-logging rules
optimization on a logical plan? _ Recovery procedure
— Dynamic programming « How does redo logging work?
— Left-deep or Right-deep join trees « How does undo/redo logging work?

e What is a checkpoint?

¢ What is a nonquiescent checkpoint?

¢ Do you know when <END CKPT> is added in each method?
— Selection « Do you know recovery procedures with a checkpointed log?
— Join » What are advantages and disadvantages of each method?

« Do you know how to estimate the size of an
intermediate operation?

