
CS411
Database Systems

Kazuhiro Minami

14: Concurrency Control

Approaches for Concurrency Control

• Locking
– Maintain a lock on each database element

• Timestamping
– Assign a “timestamp” to each transaction and

database element
• Validation

– Maintain a record of what active transactions are
doing

2

Locks are the basis of most
protocols to guarantee

serializability.

• Prevent orders of actions that lead to an
unserializable schedule using locks

• Maintain a lock on each database element
• Transactions must obtain a lock on a database

element if they want to perform any operation on
that element

Locks

requests from
transactions

Scheduler
lock
table

Serializable schedule
of action

• A scheduler uses a lock table to guide decisions

Locks(element, transaction)

Requirements for the use of locks
• Consistency of transactions

– A transaction can only read or write an element if it
previously requested a lock on that element and hasn’t
yet released the lock

– If a transaction locks an element, it must later unlock
that element

• Legality of schedulers
– No two transactions may have locked the same

element without one having first released the lock

Notation for locks
• li(X) : Transaction Ti requests a lock on database

element X
• ui(X) : Transaction Ti releases its lock on

database element X

Example 1
• A legal, but not serializable schedule

l1(A); r1(A);
A := A+100;
w1(A);u1(A);

l2(A);r2(A);
A ;= A*2;
w2(A); u2(A);
l2(B); r2(B);
B := B*2;
w2(B); u2(B);

T1 T2 A B
25 25

125

250

50

150l1(B); r1(B);
B := B+100;
w1(B);u1(B);

Example 2
• T1 and T2 lock B before releasing the lock on A

l1(A); r1(A);
A := A+100;
w1(A); l1(B); u1(A);

l2(A);r2(A);
A ;= A*2;
w2(A);
l2(B);

T1 T2 A B
25 25

125

250

125

250

r1(B); B := B+100;
w1(B); u1(B);

l2(B); u2(A); r2(B);
B := B*2;
w2(B); u2(B);

Denied

2-Phase Locking (2PL): no new locks
once you’ve given one up

• In every transaction, all lock requests precede all
unlock requests

• Guaranteed that a legal schedule of consistent
transactions is conflict-serializable

Why Two-Phase Locking Works
• Each two-phase-locked transaction may be

thought to execute in its entirety at the instant it
issues its first unlock request

• The conflict-equivalent serial schedule for a
schedule S of 2PL transactions is the one in
which the transactions are ordered in the same
order as their first unlock

locks
acquired time

Instantaneously
executes now

2PL doesn’t solve every potential
problem.

W(B)
R(A)

 W(A)
R(A)
R(B)

W(B)

T1
T2

T1 commits

Now T2 aborts!

We should never
have let T1 commit.

Cascading
rollback

How do we deal with this?
Commit trans T only after all transactions that wrote

data that T read have committed
Or only let a transaction read an item after the

transaction that last wrote this item has committed

Strict 2PL: 2PL + a transaction releases its locks
only after it has committed.

How does Strict 2PL prevent cascading rollback?

Concurrency Control
by Timestamps

Timestamping
for Concurrency Control

• Assign a “timestamp” to each transaction
• Record the timestamps of transactions that last

read and write each database element

Timestamps

• Scheduler assigns each transaction T a timestamp
of its starting time TS(T)

• Each database element X is associated with
– RT(X): read time, the highest timestamp of a

transaction that has read X
– WT(X): write time, the highest timestamp of a

transaction that has written X
– c(X): the commit bit of X, which is true iff the most

recent transaction to write X has already committed

Assumed Serial Schedule

• Conflict serializable schedule that is equivalent to
a serial schedule in which the timestamp order of
transactions is the order to execute them

T
starts

U
starts

V
starts

Actual
schedule

T
starts

U
starts

V
starts

Serial
schedule

Detecting Physically Unrealizable
Behaviors Using Timestamps

1. Read too late 2. Write too late

T start U start

U write X
T read X

T start U start

U read X
T write X

TS(T) < WT(X) TS(T) < RT(X)

WT(X) = TS(U)
RT(X) = TS(U)

Problem with Dirty Data

T
start

U
start

U write
X T read

X

U
aborts

The commit bit is designed to help deal with the problem of
dirty data Better to delay T’s

read until U commits
or aborts

by checking the
commit bit C(X)

Another Problem with Dirty Data

T
start

U
start

U writes X
T writes X

U aborts

• Thomas write rule: T’s write can be skipped if

T
commits

TS(T) < WT(X)
T’s write is cancelled

because of U’s
timestamp in WT(X) is

smaller.

We need to
restore the

previous value
for X, but…

Scheduler’s Response to a T’s request
for Read(X)/Write(X)

1. Grant the request
2. Abort and restart (roll back) T with a new

timestamp
3. Delay T and later decide whether to abort T or

to grant the request

Rules for Timestamp-Based Scheduling
Request rT(X):

1. If TS(T) >= WT(X), the read is physically
realizable

I. If C(X) is true, grant the request. If TS(T) > RT(X), set
RT(X) := TS(T); otherwise do not change RT(X)

II. If C(X) is false, delay T until C(X) becomes true or the
transaction that wrote X aborts

2. If TS(T) < WT(X), the read is physically
unrealizable. Rollback T; abort T and restart it with
a new, larger timestamp

Rules for Timestamp-Based Scheduling
Request wT(X):

1. If TS(T) >= RT(X) and TS(T) >= WT(X), the write
is physically realizable and must be performed

1. Write the new value for X
2. Set WT(X) := TS(T), and
3. Set C(X) := false

2. If TS(T) >= RT(X), but TS(T) < WT(X), then the
write is physically realizable, but there is already a
later value in X. If C(X) is true, then ignore the
write by T. If C(X) is false, delay T

3. If TS(T) < RT(X), then the write is physically
unrealizable

Example

T1 T2 T3 A B C
200 150 175 RT=0 RT=0 RT=0

WT=0 WT=0 WT=0

r1(B)

w1(B)
w1(A)

r2(A)

w2(C)
Abort;

r3(c)

w3(A)

RT=150
RT=200

RT=175

WT=200
WT=200

WT=175

Transactions Database elements

Writing too
late!

Multiversion Timestamps
• Maintain old versions of database elements
• Allow read rT(X) that would cause T to abort to

proceed by reading the version of X

T1 T2 T3 T4 A

150 200 175 225 RT=0
WT=0

r1(A);
w1(A);

r2(A);
w2(A);

r3(A);
Abort;

RT=150

RT=200

RT=225

WT=150

WT=200

r4(A);

Multiversion Timestamping Scheduler
• When wT(X) occurs, if it’s legal, a new version of X,

Xt where t = TS(T), is created.
• When rT(X) occurs, find the version Xt of X s.t.

t <= TS(T), but no Xt’ with t < t’ <= TS(T)
• Write times are associated with versions of an element,

and they never change
• Read times are also associated with versions
• When Xt has a write time t s.t. no active transaction has a

timestamp less than t, we can delete any version of X
previous to Xt

Example

T1 T2 T3 T4 A0 A150 A200

150 200 175 225

r1(A);
w1(A);

r2(A);
w2(A);

r3(A);
r4(A);

RT=150
WT=150
RT=200

RT=225

RT=175

WT=200

Timestamps vs. Locks
Time stamps

• Superior if
– most transactions are read-

only
– rare that concurrent

transactions will read or
write the same element

• In high-conflict
situations, rollback will
be frequent, introducing
more delays than a
locking system

Locks

• Superior in high-conflict
situations

• Frequently delay
transactions as they wait
for locks

Concurrency Control
by Validation

Concurrency Control by Validation

• Another type of optimistic concurrency control
• Maintains a record of what active transactions are

doing
• Just before a transaction starts to write, it goes

through a “validation phase”
• If a there is a risk of physically unrealizable

behavior, the transaction is rolled back

Validation-based Scheduler

• Keep track of each transaction T’s
– Read set RS(T): the set of elements T read
– Write set WS(T): the set of elements T write

• Execute transactions in three phases:
1. Read. T reads all the elements in RS(T)
2. Validate. Validate T by comparing its RS(T) an

WS(T) with those in other transactions. If the
validation fails, T is rolled back

3. Write. T writes its values for the elements in WS(T)

Scheduler Maintains Information Sets
• START: the set of transactions that have started,

but not yet completed validation. For each T,
maintain (T, START(T))

• VAL: the set of transactions that have been
validated, but not yet finished. For each T,
maintain (T, START(T), VAL(T))

• FIN: the set of transaction that have completed.
For each T, maintain (T, START(T), VAL(T),
FIN(T))

Assumed Serial Schedule for Validation

• We may think of each transaction that
successfully validates as executing at the moment
that it validates

T
validates

U
validates V validates

Actual
schedule

Serial
schedule

T
validates

U
validates V validates

Potential Violation of the Serial Order
• Transactions T and U such that

– U has validated
– START(T) < FIN(U)
– RS(T) ∩ WS(U) is not empty

U start T start U validated T validating

T reads X
U writes X

Another Potential Violation
of the Serial Order

• Two transactions T and U such that
– U is in VAL
– VAL(T) < FIN(U)
– WS(T) ∩ WS(U) is not empty

T validating U finish

T writes X
U writes X

U validated

Validation Rules
To validate a transaction T,
1. Check that RS(T) ∩ WS(U) is an empty set for any

validated U and START(T) < FIN(U)
2. Check that WS(T) ∩ WS(U) is an empty set for any

validated U that did not finish before T validated, i.e.,
if VAL(T) < FIN(U)

Example

U

RS = {B}
WS= {D}

T
RS={A,B}
WS= {A,C}

W

RS = {A,D}
WS= {A,C}

V
RS={B}
WS= {D,E}

= start
= validate
= finish

Comparison of Three Mechanisms
• Storage utilization

– Locks: space in the lock table is proportional to the
number of database elements locked

– Timestamps: Read and write times for recently
accessed database elements

– Validation: timestamps and read/write sets for each
active transaction, plus a few more transactions that
finished after some currently active transaction began

Comparison of Three Mechanisms
• Delay

– Locking delays transactions but avoids rollbacks,
even when interaction is high

– If interference is low, neither timestamps nor
validation will cause many transactions

– When a rollback is necessary, timestamps catch some
problems earlier than validation

Summary

39

Serial
Schedules

Serializable Schedules

Conflict-serializable
Schedules

Two-Phase
Locking

Timestamping Two-Phase
Locking

