CS411
Database Systems

14: Concurrency Control

Kazuhiro Minami

Approaches for Concurrency Control

 Locking
— Maintain a lock on each database element
¢ Timestamping
— Assign a “timestamp” to each transaction and
database element
 Validation
— Maintain a record of what active transactions are
doing

Locks are the basis of most
protocols to guarantee
serializability.

* Prevent orders of actions that lead to an
unserializable schedule using locks

* Maintain a lock on each database element

* Transactions must obtain a lock on a database
element if they want to perform any operation on
that element

Locks

« A scheduler uses a lock table to guide decisions

requests from
transactions

|

lock
table Scheduler
Locks(element, transaction) | Serializable schedule
of action

_J

Requirements for the use of locks

« Consistency of transactions

— A transaction can only read or write an element if it
previously requested a lock on that element and hasn’t
yet released the lock

— If a transaction locks an element, it must later unlock
that element

« Legality of schedulers

— No two transactions may have locked the same
element without one having first released the lock

Notation for locks

* Ii(X) : Transaction T, requests a lock on database
element X

* U;(X) : Transaction T; releases its lock on
database element X

Example 1
¢ A legal, but not serializable schedule
T T, A B

1, (A); 1y(A); 25 25

A = A+100;

Wy (A);U;(A); 125
L(AYT(A);
RO 250

W,(A); Uy(A);
1,(B); 1,(B);

B :=B*2; 50
Wy(B); u,(B);

1L(B); ry(B); 150
B := B+100;
w,(B);u,(B);

Example 2
» T, and T, lock B before releasing the lock on A
T, T, A B
L(A); r(A); 25 25
A = A+100;
Wi(A); 11(B); uy(A); 125
LANT(A):
A= A*2;
W(A); 250
1,(B); .
Denieq 125

r,(B); B := B+100;
w, (B); uy(B);

250
1,(B); uy(A); (B);
B:=B*2;

Wy(B); U,(B);

2-Phase Locking (2PL): no new locks
once you've given one up

« In every transaction, all lock requests precede all
unlock requests

» Guaranteed that a legal schedule of consistent
transactions is conflict-serializable

Why Two-Phase Locking Works

« Each two-phase-locked transaction may be
thought to execute in its entirety at the instant it
issues its first unlock request

« The conflict-equivalent serial schedule for a
schedule S of 2PL transactions is the one in
which the transactions are ordered in the same
order as their first unlock

Instantaneously
executes now

locks ;
acquired ~ time

2PL doesn't solve every potential

problem.

:; We should never

w(B) have let T1 commit.
R(A) I
W(A) - | 4 Lar

R(A) (el b

R(B) AT

w(B) : La

T1 it
commss — Cascading

Now T2 aborts! rollback

How do we deal with this?

Commit trans T only after all transactions that wrote
data that T read have committed

Or only let a transaction read an item after the
transaction that last wrote this item has committed

Strict 2PL: 2PL + a transaction releases its locks
only after it has committed.

How does Strict 2PL prevent cascading rollback?

Concurrency Control
by Timestamps

Timestamping
for Concurrency Control

 Assign a “timestamp” to each transaction

« Record the timestamps of transactions that last
read and write each database element

Timestamps

« Scheduler assigns each transaction T a timestamp
of its starting time TS(T)
* Each database element X is associated with

— RT(X): read time, the highest timestamp of a
transaction that has read X

— WT(X): write time, the highest timestamp of a
transaction that has written X

— ¢(X): the commit bit of X, which is true iff the most
recent transaction to write X has already committed

Assumed Serial Schedule

 Conflict serializable schedule that is equivalent to
a serial schedule in which the timestamp order of
transactions is the order to execute them

Actua| T._.—.T.H—.T.“H
schedule 1 U Vv
starts starts starts
Serial N N% I%
schedule U v,

starts starts starts

Detecting Physically Unrealizable
Behaviors Using Timestamps

2. Write too late

1. Read too late

WT(X) = TS(U)
J RT(X) = TS(U)
erte X U read X
T read X T write X
|

N N
I N

T start U start T start U start /

TS(T) < WT(X) | TS(T) <RT(X)

Problem with Dirty Data

The commit bit is designed to help deal with the problem of

dirty data Better to delay T’s
read until U commits
U writ or aborts
write by checking the
X T read commit bit C(X)

U T

start start U

aborts

Another Problem with Dirty Data

* Thomas write rule: T’s write can be skipped if
TS(T) < WT(X)

T’s write is cancelled
because of U’s

U writes X timestamp in WT(X) is
T writes X SUE
o We need to
I I I I restore the
T U T previous value
start start commits U aPorts w

Scheduler’s Response to a T’s request
for Read(X)/Write(X)

1. Grant the request

2. Abort and restart (roll back) T with a new
timestamp

3. Delay T and later decide whether to abort T or
to grant the request

Rules for Timestamp-Based Scheduling

Request r+(X):
1. If TS(T) >= WT(X), the read is physically
realizable

I. If C(X) is true, grant the request. If TS(T) > RT(X), set
RT(X) := TS(T); otherwise do not change RT(X)
, delay T until C(X) becomes true or the
transaction that wrote X aborts
2. IfTS(T) < WT(X), the read is physically
unrealizable. Rollback T; abort T and restart it with
a new, larger timestamp

Rules for Timestamp-Based Scheduling

Request w.(X):

1. If TS(T) >= RT(X) and TS(T) >= WT(X), the write
is physically realizable and must be performed
1. Write the new value for X
2. Set WT(X) :=TS(T), and
3. Set C(X) := false

, then the

write is physically realizable, but there is already a
later value in X. If C(X) is true, then ignore the
write by T. If C(X) is false, delay T

3. If TS(T) < RT(X), then the write is physically
unrealizable

Multiversion Timestamps

* Maintain old versions of database elements

 Allow read r(X) that would cause T to abort to
proceed by reading the version of X

Example
Transactions Database elements
T, T, T, A B C
200 150 175 RT=0 RT=0 RT=0
WT=0 WT=0 WT=0
r,(B) RT=200
r,(A) RT=150 _
Writing too RT=175
w,(B) late! WT=200
w;(A) WT=200
w,(C)
Abort;
Ws(A) WT=175

T

T2

Ty

Ty

A

150

200

175

225

RT=0
WT=0

1(A);

wy(A);

(A);

W,(A);

13(A);
Abort;

RT=150
WT=150
RT=200
WT=200

RT=225

Multiversion Timestamping Scheduler

* When w(X) occurs, if it’s legal, a new version of X,
X; where t = TS(T), is created.

» When r(X) occurs, find the version X, of X s.t.
t <= TS(T), but no Xt” witht <t’ <= TS(T)

« Write times are associated with versions of an element,
and they never change

« Read times are also associated with versions

» When X, has a write time t s.t. no active transaction has a
timestamp less than t, we can delete any version of X
previous to X;

Tl T2 T3 TA AD AlSO AZOO
150 200 175 225
r(A); RT=150
wy(A); WT=150
1(A); RT=200
W,(A); WT=200
13(A); RT=175
r4(A); RT=225

Timestamps vs. Locks

Time stamps Locks
* Superior if » Superior in high-conflict
- Lnnolilt transactions are read- situations
— rare that concurrent * Frequently delay
transactions will read or transactions as they wait
write the same element for locks

¢ In high-conflict
situations, rollback will
be frequent, introducing
more delays than a
locking system

Concurrency Control
by Validation

Concurrency Control by Validation

Another type of optimistic concurrency control
Maintains a record of what active transactions are
doing

Just before a transaction starts to write, it goes
through a “validation phase”

If a there is a risk of physically unrealizable
behavior, the transaction is rolled back

Validation-based Scheduler

» Keep track of each transaction T’s

— Read set RS(T): the set of elements T read

— Write set WS(T): the set of elements T write
» Execute transactions in three phases:

1. Read. T reads all the elements in RS(T)

2. Validate. Validate T by comparing its RS(T) an
WS(T) with those in other transactions. If the
validation fails, T is rolled back

3. Write. T writes its values for the elements in WS(T)

Scheduler Maintains Information Sets

* START: the set of transactions that have started,
but not yet completed validation. For each T,
maintain (T, START(T))

« VAL: the set of transactions that have been
validated, but not yet finished. For each T,
maintain (T, START(T), VAL(T))

¢ FIN: the set of transaction that have completed.
For each T, maintain (T, START(T), VAL(T),
FIN(T))

Assumed Serial Schedule for Validation

* We may think of each transaction that
successfully validates as executing at the moment
that it validates

Actual

schedule 'TW”TFHT%
T U _

validates validates V validates

T

V validates

Serial

schedule [
T U
validates validates

Potential Violation of the Serial Order

 Transactions T and U such that
— U has validated
—START(T) < FIN(U)
—RS(T) n WS(U) is not empty

T reads X)
U writes X

U start Tstart U validated T validating

Another Potential Violation
of the Serial Order
¢ Two transactions T and U such that
—-Uisin VAL
—VAL(T) < FIN(U)
—WS(T) n WS(U) is not empty

T writes X .
U writes X

]

U validated T validating U finish

Validation Rules

To validate a transaction T,

1. Check that RS(T) N WS(U) is an empty set for any
validated U and START(T) < FIN(U)

2. Check that WS(T) n WS(U) is an empty set for any
validated U that did not finish before T validated, i.e.,
if VAL(T) < FIN(U)

Example
RS = {B} = s
Wo- (D} We- {acy
U w

A]

W I = start

. VS (B} = validate
RS={A B} RS={B e
ws={AC} WS={D,E} © = finish

Comparison of Three Mechanisms
« Storage utilization

— Locks: space in the lock table is proportional to the
number of database elements locked

— Timestamps: Read and write times for recently
accessed database elements

— Validation: timestamps and read/write sets for each
active transaction, plus a few more transactions that
finished after some currently active transaction began

Comparison of Three Mechanisms

e Delay

— Locking delays transactions but avoids rollbacks,
even when interaction is high

— If interference is low, neither timestamps nor
validation will cause many transactions

— When a rollback is necessary, timestamps catch some
problems earlier than validation

Summary

Timestamping

Two-Phase

Locking

Two-Phase
Locking

Conflict-serializable
Schedules

Serializable Schedules

39

