
CS411
Database Systems

Kazuhiro Minami

14: Concurrency Control

Announcements
• Homework 5 due on Dec 1
• Graduate project is due on Dec 1
• Project stage 5 is due on Dec 3

• No office hour next Friday (Nov. 26)

Undo/Redo Logging

Redo/undo logs save both before-images
and after-images.

<START T>
<COMMIT T>
<ABORT T>
<T, X, old_v, new_v>

– T has written element X; its old value was old_v, and
its new value is new_v

Undo/Redo-Logging Rule
UR1: If T modifies X, then <T,X,u,v> must be

written to disk before X is written to disk
Note: we are free to OUTPUT early or late (I.e.

before or after <COMMIT T>)

<COMMIT T> <COMMIT T> <COMMIT T>

Undo Redo Undo/redo

OUTPUT
OUTPUT

OUTPUT
OUTPUT

OUTPUT

OUTPUT

Action T Mem A Mem B Disk A Disk B Log (memory) Log (disk)

<START T>

READ(A,t) 8 8 8 8

t := t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t := t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

FLUSH LOG
<START T>
<T, A, 8, 16>
<T, B, 8, 16>

OUTPUT(A
) 16 16 16 16 8

<COMMIT T>

FLUSH LOG <COMMIT T>

OUTPUT(B
) 16 16 16 16 16

Recovery is more complex with
undo/redo logging.

1. Redo all committed
transactions, starting
at the beginning of
the log

2. Undo all incomplete
transactions, starting
from the end of the
log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

R
E
D
O

U
N
D
O

8

Algorithm for non-quiescent
checkpoint for undo/redo

1. Write <start checkpoint, list of
all active transactions> to log

2. Flush log to disk
3. Write to disk all dirty buffers,

whether or not their transaction
has committed
(this implies some log records may

need to be written to disk)
4. Write <end checkpoint> to log
5. Flush log to disk

Flush dirty

buffer pool

pages

…

<start
checkpoint,
active Tns are
T1, T2, …>
…

<end
checkpoint>

…

Acti
ve

Tns

Pointers are one of
many tricks to speed

up future undos

U
N
D
O

Algorithm for undo/redo recovery with
nonquiescent checkpoint
1. Backwards undo pass (end of log to start of

last completed checkpoint)
a. C = transactions that committed after the

checkpoint started
b. Undo actions of transactions that (are in A

or started after the checkpoint started) and
(are not in C)

2. Undo remaining actions by incomplete
transactions
a. Follow undo chains for transactions in

(checkpoint active list) – C

3. Forward pass (start of last completed
checkpoint to end of log)
a. Redo actions of transactions in C

Acti
ve

Tns …

<start
checkpoint,
A=active Tns>
…
<end
checkpoint>

…

R
E
D
O
S

Examples
what to do at
recovery time?

no <T1 commit>

Undo T1 (undo A, B, C)

…
T1 wrote A, …
…
checkpoint start (T1
active)

…
T1 wrote B, …
…
checkpoint end
…
T1 wrote C, …
…

Redo T1: (redo B, C)

…
T1 wrote A, …
…
checkpoint start (T1
active)

…
T1 wrote B, …
…
checkpoint end
…
T1 wrote C, …
…
T1 commit

Examples
what to do at
recovery time?

Concurrency Control

A transaction is a sequence of operations
that must be executed as a whole.

Every DB action takes place inside a
transaction.

BUSEY
SAVING
S

Winslett

$1000

BUSEY
CHECKIN
G

Winslett

$0

Either both (1) and (2) happen or neither!

Transfer $500

1. Debit savings
2. Credit checking

We abstract away most of the application
code when thinking about transactions.

Read Balance1
Write Balance1
Read Balance2
Write Balance2

Transfer $500

1. Debit savings
2. Credit checking

User’s point of view

Code writer’s

point of view

Concurrency control ‘s &

recovery’s point of view

Schedule: The order of execution of
operations of two or more transactions.

R(A)
R(C)
W(A)
R(B)
W(C)

R(B)
W(B)

W(B)

Transaction1 Transaction2
Schedule S1

T
im

e

Read data
item A

(typically
a tuple)

Why do we need transactions?

R(A)
W(A)

Transaction 1:
Add $100 to
account A

R(A)
W(A)

T
im

e

Transaction 2:
Add $200 to
account A

R(A)

W(A)

R(A)
W(A)

T
im

e

What will be the final account balance?
Transaction 1:

Add $100 to
account A

Transaction 2:
Add $200 to
account A

The Lost Update Problem

R(A)
W(A)

F A I L

R(A)
W(A)

T
im

e

What will be the final account balance?
Transaction 1:

Add $100 to
account A

Transaction 2:
Add $200 to
account A

Dirty reads cause problems.

Abort or roll back are the
official words for “fail”.

Commit
All your writes will definitely absolutely be
recorded and will not be undone, and all the
values you read are committed too.

Abort/rollback
Undo all of your writes!

The concurrent execution of
transactions must be such that

each transaction appears to
execute in isolation.

Scheduler

Transaction
Manager

Scheduler

Buffers

Reads and writes

Read/Write request

Schedule
• Time-ordered sequence of the important actions

taken by one or more transactions
• Consider only the READ and WRITE actions,

and their orders; ignore the INPUT and
OUTPUT actions
– An element in a buffer is accessed by multiple

transactions

Serial Schedule
• If any action of transaction T1 precedes any

action of T2, then all action of T1 precede all
action of T2

• The correctness principle tells us that every serial
schedule will preserve consistency of the
database state

Time
T1’s actions T2’s actions

Example 1: (T1, T2)

READ(A, t)
t := t + 100
WRITE(A, t)
READ(B, t)
t := t + 100
WRITE(B, t)

READ(A, s)
s := s * 2
WRITE(A, s)
READ(B, s)
s := s * 2
WRITE(B, s)

T1 T2 A B

25 25

125

125

250

250

Example 2: (T2, T1)

READ(A, t)
t := t + 100
WRITE(A, t)
READ(B, t)
t := t + 100
WRITE(B, t)

READ(A, s)
s := s * 2
WRITE(A, s)
READ(B, s)
s := s * 2
WRITE(B, s)

T1 T2 A B

25 25

50

50

150

150

Serial Schedule is Not Necessarily
Desirable

• Improved throughput
– I/O activity can be done in parallel with processing at

CPU
• Reduced average waiting time

– If transactions run serially, a short transaction may
have to wait for a preceding long transaction to
complete

A schedule is serializable if it is
guaranteed to give the same final result

as some serial schedule.
Which of these are serializable?

Read(A)
Read(A)
Write(A)

Write(A)
Read(B)
Write(B)

Read(B)
Write(B)

Read(A)
Read(A)

Write(A)
Write(A)

Read(B)
Write(B)

Read(B)
Write(B)

Read(A)
Write(A)

Read(A)
Write(A)

Read(B)
Write(B)

Read(B)
Write(B)

Notation for Transactions and Schedules
• We do not consider the details of local

computation steps such as t := t + 100
• Only the reads and writes matter
• Action: ri(X) or wi(X)
• Transaction Ti: a sequence of actions with

subscript i
• Schedule S: a sequence of actions from a set of

transactions T

Examples

• T1: r1(A); w1(A); r1(B); w1(B);
• T2: r2(A); w2(A); r2(B); w2(B);
• S: r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

Conflict-Serializability
• Commercial systems generally support conflict-

serializability
– Stronger notion than serializability

• Based on the idea of a conflict
• Turn a given schedule to a serial one by make as

many nonconflicting swaps as we wish

Conflicts
• A pair of consecutive actions in a schedule such

that, if their order is interchanged, then the
behavior of at least one of the transactions
involved can change

Conflicting Swaps
• Two actions of the same transaction

- E.g., ri(X); wi(Y)

• Two writes of the same database element
- E.g., wi(X); wj(X)

• A read and a write of the same database element
- E.g., ri(X); wj(X)

Nonconflicting swaps
• Any two actions of different transactions may be

swapped unless:
– They involve the same database element, and

– At least one is a write

• Examples:
1. ri(X); rj(Y)

2. ri(X); wj(Y) if X!= Y

3. wi(X); rj(Y) if X != Y

4. wi(X); wj(Y) if X != Y

Conflict-serializable
• Two schedules are conflict-equivalent if they can

be turned one into the other by a sequence of
nonconflicting swaps of adjacent actions

• A schedule is conflict-serializable if it is conflict-
equivalent to a serial schedule

• Easy to check whether a schedule is conflict-
serializable by examining a precedence graph

Example

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);
r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B);
r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B);
r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B);
r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B);

Test for Conflict-Serializability
• Can decide whether or not a schedule S is

conflict-serializable
• Ideas:

– when there are conflicting actions that appear
anywhere in S, the transactions performing those
actions must appear in the same order in any conflict-
equivalent serial schedule

– Summarize those conflicting actions in a precedence
graph

Precedence Graphs
• T1 takes precedence over T2 (T1 <S T2), if there

are actions A1 of T1 and A2 of T2, s.t.
– A1 is ahead of A2 in S
– Both A1 and A2 involve the same database element
– At least one of A1 and A2 is a written action

• Construct a precedence graph and ask if there are
any cycles

Example

S: r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

1 2 3

S’: r1(B); w1(B); r2(A); w2(A); r2(B); w2(B); r3(A); w3(A);

Example

S1: r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

1 2 3

