
CS411
Database Systems

Kazuhiro Minami

06: SQL

Join Expressions

Join Expressions

• SQL provides a number of expression forms
that act like varieties of join in relational
algebra.
– But using bag semantics, not set semantics.

• These expressions can be stand-alone
queries or used in place of relations in a
FROM clause.

Products and Natural Joins

• Natural join is obtained by:
R NATURAL JOIN S;

• Cartesian product is obtained by:
R CROSS JOIN S;

• Example:
Likes NATURAL JOIN Serves;

• Relations can be parenthesized
subexpressions, as well.

Theta Join
• R JOIN S ON <condition> is a theta-

join, using <condition> for selection.
• Example: using Drinkers(name, addr)

and Frequents(drinker, bar):
Drinkers JOIN Frequents ON

name = drinker;

gives us all (d, a, d, b) quadruples such
that drinker d lives at address a and
frequents bar b.

Grouping and Aggregation

Aggregations

• SUM, AVG, COUNT, MIN, and MAX can be
applied to a column in a SELECT clause to
produce that aggregation on the column.

• Also, COUNT(*) counts the number of tuples.

Example: Aggregation

From Sells(bar, beer, price), find the average
price of Bud:

SELECT AVG(price)
FROM Sells

WHERE beer = ‘Bud’;

Eliminating Duplicates
in an Aggregation

• DISTINCT inside an aggregation causes
duplicates to be eliminated before the
aggregation.

• Example: find the number of different
prices charged for Bud:

SELECT COUNT(DISTINCT price)
FROM Sells
WHERE beer = ‘Bud’;

NULLs are ignored in
aggregations of a column

SELECT count(*)
FROM Sells
WHERE beer = ‘Bud’;

SELECT count(price)
FROM Sells
WHERE beer = ‘Bud’;

The number of bars
that sell Bud

The number of bars
that sell Bud at a
non-null price

If there are no non-NULL values in a column, then
the result of the aggregation is NULL

Grouping

• We may follow a SELECT-FROM-WHERE
expression by GROUP BY and a list of
attributes.

• The relation that results from the SELECT-
FROM-WHERE is partitioned according to
the values of all those attributes, and any
aggregation is applied only within each
group.

Example: Grouping
Sells(bar, beer, price)

Q: find the average price for each beer:

SELECT beer, AVG(price)

FROM Sells
GROUP BY beer;

Example: Grouping

Frequents(drinker, bar), Sells(bar, beer, price)
Q: find for each drinker the average price of Bud

at the bars they frequent:

SELECT drinker, AVG(price)
FROM Frequents, Sells
WHERE Sells.bar = Frequents.bar

AND beer = ‘Bud’
GROUP BY drinker;

Compute
drinker-bar-
price of Bud
tuples first,
then group
by drinker.

Restriction on SELECT Lists
With Aggregation

• If any aggregation is used, then each element
of the SELECT list must be either:

1. Aggregated, or
2. An attribute on the GROUP BY list.

Illegal Query Example

You might think you could find the bar that
sells Bud the cheapest by:

SELECT bar, MIN(price)
FROM Sells
WHERE beer = ‘Bud’;

But this query is illegal in SQL.
– Why? Note bar is neither aggregated nor

on the GROUP BY list.

HAVING Clauses

• HAVING <condition> may follow a GROUP
BY clause.

• If so, the condition applies to each group, and
groups not satisfying the condition are
eliminated.

Requirements on HAVING
Conditions

• These conditions may refer to any relation
or tuple-variable in the FROM clause.

• They may refer to attributes of those
relations, as long as the attribute makes
sense within a group; i.e., it is either:

1. A grouping attribute, or
2. Aggregated.

Example: HAVING

Sells(bar, beer, price)

Q: Find the average price of those beers that
are served in at least three bars

Solution

SELECT beer, AVG(price)
FROM Sells
GROUP BY beer
HAVING COUNT(bar) >= 3

Beer groups with at least
3 non-NULL bars and also
beer groups where the
manufacturer is Pete’s.

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but
NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions or grouping
attributes

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation steps:
1. Compute the FROM-WHERE part, obtain a table

with all attributes in R1,…,Rn

2. Group by the attributes a1,…,ak

3. Compute the aggregates in C2 and keep only
groups satisfying C2

4. Compute aggregates in S and return the result

Example
• From Sells(bar, beer, price), find the average

price for each beer that is sold by more than
one bar in Champaign:

SELECT beer, AVG(price)
FROM Sells
Where address = ‘Champaign’
GROUP BY beer
Having COUNT(bar) > 1

Example

Smith’s Champaign Bud $2
Smith’s Champaign Kirin $2
J’s bar Urbana Bud $4
K’s bar Champaign Bud $3

bar address beer price
Smith’s Champaign Bud $2
Smith’s Champaign Kirin $2
K’s bar Champaign Bud $3

Smith’s Champaign Bud $2
K’s bar Champaign Bud $3
Smith’s Champaign Kirin $2

Smith’s Champaign Bud $2
K’s bar Champaign Bud $3

Bud $2.50

1

3

2

4

Exercise 3: online bookstore
Book(isbn, title, publisher, price)
Author(assn, aname, isbn)
Customer(cid, cname, state, city, zipcode)
Buy(tid, cid, isbn, year, month, day)

Q3: Make a list of the names of customers who live in
Illinois and spent more than $5,000 in year 2000.

