
CS411
Database Systems

Kazuhiro Minami

06: SQL

Multi-Relation Queries

Find the beers liked by at least one 
person who frequents Murphy’s Pub

SELECT beer AS beersWorthKeeping
FROM Likes, Frequents
WHERE Likes.drinker = Frequents.drinker     

AND bar = ‘Murphy’’s Pub’;

SELECT beer AS beersWorthKeeping
FROM Likes, Frequents
WHERE Likes.drinker = Frequents.drinker     

AND bar = ‘Murphy’’s Pub’;

beersWorthKeeping

Likes(drinker, beer)    Frequents(drinker, bar)

Likes.
drinker

beer

Bob Samuel 
Adams

Alice Bud

Likes
Frequesnts
. drinker

bar

Bob Murphy’s 
Pub

Alice Blind Pig

Frequents

Samuel Adams

If you are confused, go back to E/R 
model

Likes.
drinker

beer

Bob Samuel 
Adams

Alice Bud

Likes
Frequesnts
. drinker

bar

Bob Murphy’s 
Pub

Alice Blind Pig

Frequents

Drinker
Beer

Bar

Likes

Frequents

drinker
beer

bar
Murphy’s pub

Bob
Samuel Adams



Exercise 2: online bookstore
Book(isbn, title, publisher, price) 
Author(assn, aname, isbn)
Customer(cid, cname, state, city, zipcode) 
Buy(tid, cid, isbn, year, month, day)

Q2: Make a list of the CIDs and customer names
who bought books written by ‘Barack Obama’?

SELECT Customer.cid, Customer.cname
FROM    Author, Buy, Customer
WHERE Customer.cid = Buy.cid AND Buy.isbn = Author.ibn 

AND Author.name = `Barack Obama’ ;

Buy

Assn Aname isbn

1 Barack 
Obama

0307455874

1 Barack 
Obama

1400082773

2 Dan 
Brown

0385504225

Author
cid cname

1 John Carlson

2 Allen Huang

3 Ryan 
Mathews

Customer

tid cid isbn
1 1 0307455874
2 2 0385504225
3 3 1400082773

Who bought Obama’s book?

Unfortunately, DBMS cannot look 
at multiple tables at the same time
Author.

assn
Author.
aname

Author.
isbn

Customer.
cid

Customer.
cname

Buy.
tid

Buy.
cid

Buy.
isbn

1 Barack 
Obama

0307455874 1 John Carlson 1 1 0307455874

1 Barack 
Obama

0307455874 1 John Carlson 2 2 0385504225

1 Barack 
Obama

0307455874 1 John Carlson 3 3 1400082773

1 Barack 
Obama

0307455874 2 Allen Huang 1 1 0307455874

1 Barack 
Obama

0307455874 2 Allen Huang 2 2 0385504225

1 Barack 
Obama

0307455874 2 Allen Huang 3 3 1400082773

1 Barack 
Obama

0307455874 3 Ryan Mathews 1 1 0307455874

1 Barack 
Obama

0307455874 3 Ryan Mathews 2 2 0385504225

1 Barack 
Obama

0307455874 3 Ryan Mathews 3 3 1400082773

I cannot include all the combined tuples. Too big!

Check conditions in Where clause

Author.
assn

Author.
aname

Author.
isbn

Customer.
cid

Customer.
cname

Buy.
tid

Buy.
cid

Buy.
isbn

1 Barack 
Obama

0307455874 1 John Carlson 1 1 0307455874

1 Barack 
Obama

1400082773 3 Ryan Mathews 3 3 1400082773

Customer.cid = Buy.cid AND Buy.isbn = Author.ibn 
AND Author.name = `Barack Obama’

SELECT Customer.cid, Customer.cname



What if a query needs to use two 
copies of the same relation?

Beers(name, manf)
Find all pairs of beers by the same manufacturer.

– Do not produce pairs like (Bud, Bud).
– Produce pairs in alphabetic order, e.g. (Bud, Miller), not 

(Miller, Bud).

SELECT b1.name, b2.name
FROM Beers b1, Beers b2
WHERE   b1.manf = b2.manf

AND  b1.name < b2.name

SELECT b1.name, b2.name
FROM Beers b1, Beers b2
WHERE   b1.manf = b2.manf

AND  b1.name < b2.name

Beers1(name1, manf1) = Beers.  

Then (almost): π[name, name1](Beers ⋈ manf = manf1 & name ≠ name1 Beers2)

name manf
Bud Anheuser-Busch
Bud Lite Anheuser-Busch

Super Dry Asahi

What if a query needs to use two 
copies of the same relation?

b1
name manf
Bud Anheuser-Busch
Bud Lite Anheuser-Busch

Super Dry Asahi

b2

B1. name B1.manf B2.name B2.manf
Bud Anheuser-Busch Bud Anheuser-Bush

Bud Anheuser-Busch Bud Lite Anheuser-Bush

Bud Anheuser-Busch Super Dry Asahi

Bud Lite Anheuser-Busch Bud Anheuser-Busch

Bud Lite Anheuser-Busch Bud Lite Anheuser-Busch

Bud Lite Anheuser-Busch Super Dry Asahi

Super Dry Asahi Bud Anheuser-Busch

Super Dry Asahi Bud Lite Anheuser-Bush

Super Dry Asahi Super Dry Asahi

Usually, you want your query results 
to appear in a meaningful order

SELECT attributes1
FROM relations
WHERE condition1
GROUP BY attributes2
HAVING condition2
ORDER BY attr1, …, attrk

SELECT studentLastName, studentFirstName, netID
FROM courseEnrollments
WHERE course = ‘cs411’
ORDER BY studentLastName, studentFirstName ;

DESC ASC

Sort the output on attr1.
Within each value for attr1,

sort the output on attr2.
Within each value for 
attr1&attr2, …

List the 
students 
in CS411.

Meaning (Semantics) of SQL 
Queries

SELECT A1, …, Ak
FROM    R1, …, Rn
WHERE  conditions

1. Nested loops:

Answer = {}
for x1 in R1 do

…..
for xn in Rn do

if conditions (x1,..,xn)
then Answer = Answer ∪ {(a1,…,ak)}

return Answer

Answer = {}
for x1 in R1 do

…..
for xn in Rn do

if conditions (x1,..,xn)
then Answer = Answer ∪ {(a1,…,ak)}

return Answer

Projection onto
A1,...,Ak



Meaning (Semantics) of SQL 
Queries

SELECT A1, …, Ak
FROM    R1 AS x1, …, Rn AS xn
WHERE  conditions

3. Translation to relational algebra:

Π A1,…,Ak ( σ conditions (R1 × … × Rn))

Select-From-Where queries are 
relational algebra’s Select-Project-Join 
queries

Unintuitive Consequence 
of SQL Semantics

SELECT R.A
FROM R, S, T
WHERE R.A = S.A OR R.A = T.A

Suppose that we have relations R(A), S(A), T(A) 
and that we want to compute R ∩ (S ∪ T). 

Q: What would be a result of the query if T is empty?

Sub-queries

Subqueries

• A parenthesized SELECT-FROM-
WHERE statement (subquery) can 
be used as part of the main 
SELECT-FROM-WHERE 
statement

• Subqueries can be nested in an 
arbitrary depth



Usage of Subqueries

• Subquires can return a constant, and this 
constant can be compared with another value 
in a WHERE clause

• Subquries can return a relation that can be 
used to define conditions in a WHERE 
clauses
– IN, ALL, ANY, EXISTS

• In place of a relation in the FROM clause, we 
can place another query
– Better use a tuple-variable to name tuples of the 

result.

Because the result of a query is 
always a relation, you can query 

the result of a query
List all restaurants that opened in 2000.

SELECT name
FROM 

(SELECT name, yearOpened
FROM   Restaurants)  R

WHERE R.yearOpened = 2000;

subq
uery

From Sells(bar, beer, price), find 
the bars that serve Miller for the 
same price Joe charges for Bud.

Two queries would surely work (if we save 
the intermediate results):

1. Find the price Joe charges for Bud.
2. Find the bars that serve Miller at that 

price.

If a subquery is guaranteed to 
produce one tuple, then the subquery 

can be used like an ordinary value
SELECT bar
FROM Sells
WHERE beer = ‘Miller’ AND

price = (SELECT price
FROM Sells
WHERE bar = ‘Joe’’s Bar’

AND beer = ‘Bud’);
The price at
which Joe
sells Bud



But be careful when you use 
subqueries as values!

• Usually the tuple has one attribute.
• You’d better be sure only one tuple will be 

returned (e.g., keys guarantee it).
• A run-time error occurs if there is no tuple 

or more than one tuple.

The IN and NOT IN operators 
allow you to test whether a value 

or tuple is in a relation
Beers(name, manf)      Likes(drinker, beer)

Find the name and manufacturer of each beer that 
Fred likes.

SELECT *
FROM Beers
WHERE name IN (SELECT beer

FROM Likes
WHERE drinker = ‘Fred’);

The set of
beers Fred
likes

SELECT *
FROM Beers
WHERE name IN (SELECT beer

FROM Likes
WHERE drinker = ‘Fred’);

Beers(name, manf)      Likes(drinker, beer)
name manf
Bud Anheuser-Busch
Bud Lite Anheuser-Busch

Super Dry Asahi

drinker beer
Fred Bud
Kazu Super Dry

Fred Bud Lite

beer
Bud

Bud Lite

name manf

Output relation: 

Bud

Bud              Anheuser-Busch
Bud Lite       Anheuser-Busch

Bud LiteSuper Dry
Subquery

Q: Find the name and manufacturer of 
each beer that Fred likes.

You can test whether a relation is empty, 
using EXISTS and NOT EXISTS

SELECT name
FROM Beers b1
WHERE NOT EXISTS(

SELECT *
FROM Beers
WHERE manf = b1.manf AND

name <> b1.name);

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute.

Beers(name, manf)
Find the beers that are the only one made by their manufacturer



SELECT name
FROM Beers b1
WHERE NOT EXISTS(

SELECT *
FROM Beers
WHERE manf = b1.manf    
AND name <> b1.name);

Beers b1
name manf
Bud Anheuser-Busch
Bud Lite Anheuser-Busch

Super Dry Asahi

name manf
Bud Anheuser-Busch
Bud Lite Anheuser-Busch

Super Dry Asahi

Q: Find the beers that are the only 
one made by their manufacturer

Beers (in subquery)

name

Output relation

Anheuser-Busch

Bud

Anheuser-Busch

BudBud Lite

beer manf

Temporary  relation of the subquery

Bud Lite         Anheuser-Busch

Asahi

Super Dry Super Dry

Use ANY/ALL to check whether a 
condition is true at least once/always

x = ANY( subquery ) 

x >= ANY( subquery )

x = ALL( subquery ) 

x >= ALL( subquery )

true if x is in the (single
column) answer to subquery
true if x is as big as one or
more answers to subquery
true if x is the only answer to
subquery
true if x is as big as all the
answers to subquery

Find the beer(s) sold for the 
highest price

Sells(bar, beer, price)

SELECT beer
FROM Sells
WHERE price >= ALL(

SELECT price
FROM Sells);

price from the outer
Sells must not be
less than any price.

Relations as Bags



Bag Semantics in SQL

• The SELECT-FROM-WHERE 
statement uses bag semantics
– Selection: preserve the number of 

occurrences
– Projection: preserve the number of 

occurrences (no duplicate elimination)
– Cartesian product, join: no duplicate 

elimination 

Exceptions: Union, Intersection, and 
Difference

• Union, intersection, and difference of 
relations are expressed by the following 
forms, each involving subqueries:
– ( subquery ) UNION ( subquery )
– ( subquery ) INTERSECT ( subquery )
– ( subquery ) EXCEPT ( subquery )

Motivation: Efficiency
• When doing projection in relational 

algebra, it is easier to avoid eliminating 
duplicates.
– Just work tuple-at-a-time.

• When doing intersection or difference, it is 
most efficient to sort the relations first.
– At that point you may as well eliminate the 

duplicates anyway.

You can control whether 
duplicates are eliminated

• Force the result to be a set by   
SELECT DISTINCT . . .

• Force the result to be a bag (i.e., don’t eliminate 
duplicates) by ALL, as in        . . . UNION ALL . . 
.



From Sells(bar, beer, price), find all the 
different prices charged for beers:

SELECT DISTINCT price
FROM Sells;

Without DISTINCT, each price would be listed 
as many times as there were bar/beer pairs 
at that price.

Example: ALL

• Using relations Frequents(drinker, bar) and 
Likes(drinker, beer):

(SELECT drinker FROM Frequents)
EXCEPT ALL

(SELECT drinker FROM Likes);

• Lists drinkers who frequent more bars than 
they like beers, and does so as many times 
as the difference of those counts.


