
CS411
Database Systems

Kazuhiro Minami

10: Indexing-1

Storage Representation: Basic questions

• What is a “block”?
• What’s the metrics for evaluating algorithms in DBMS?
• What’s the purpose of main memory buffer?
• Why do we need a record header? What kind of

information is included?
• Why do we need a block header? What kind of

information is included?
• What’s the major difference between a block storing

fixed-length records and that storing variable-length
records?

• What is a “pointer”? 2

Storage Management in DBMS

Main memory

Disk

Buffer

DBMS

O
perating System

 (O
S)

blocks

pages
Update the price
to $2.00 in the
2nd record of

10th block

Read Write
Random

access with
block#

Random access
with (block#,
offset bytes)

Accessing a Field of a Record
Within a Block

4

pagepage header

Offset table

Record header

Ptr to ‘price’

2nd recode

‘price’ field

2.00

Address (block#, record#) = (10, 2)

What if a user say “Update the price of
Bud in Beers to $2.00”?

Main memory

Disk

Buffer

DBMS

O
perating System

 (O
S)

blocks

pages How can we figure
out (block#,
record#)?

Indexing

How to find boxes containing “History of
Japan” Volume 1 – 100 from Storage?

7

Storage with
millions of

boxes

You can only
check out 5 boxes
and takes a few
days for delivery

I don’t want to
open all the
boxes; it takes
forever…

Librarian
Suppose that
each box has a
ID and boxes are
sorted by IDs

Q: What kind of
information would like to
have?

Probably, what you want is a table (i.e.,
index)

8

Book title Box ID
History of Japan vol. 1 925
History of Japan vol. 2 925
History of Japan vol. 3 926
History of Japan vol. 4 928
History of Japan vol. 5 928
History of Japan vol. 6 928
History of Japan vol. 7 1001
History of Japan vol. 8 1002
History of Japan vol. 9 1002

History of Japan vol. 10 1003

Q: do you think that we
solved the problem?
Q: how do you find the
entry for “History of
Japan” in this table?
Q: What if this table is so
big and is stored in boxes
in the storage?

This is the exact
problem we

need to address
in DBMS

How to first find boxes containing Index
for “History of Japan” from Storage?

9

Storage with
millions of

boxes

Librarian

Boxes
for index

Need to retrieve
index blocks first

Indexes are used to speed up
selections on particular attributes

Search key field(s) :
– The attribute(s) that you want to look up tuples by
– any subset of the fields of a relation
– Search key is not the same as key (minimal set of fields that

uniquely identify a record in a relation).

Index entries take the form (k, r)

Search key

record, or record
ID, or record IDs

There are several different kinds of
indexes used in DBMSs

• Clustered/unclustered
– Clustered = records sorted in the (search) key order
– Unclustered = no

• Dense/sparse
– Dense = each record has an entry in the index
– Sparse = only some records have

• Primary/secondary
– Primary = on the primary key
– Secondary = on any key

Dense Indexes on a Sequential Data File
• (key, pointer) pair for every record
• File is sorted by the primary key

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80
Index file

Sequential file (data file)

Index
blocks Data

blocks

(key, pointer)

Keys and
pointers take

much less
space

Key

Sparse Indexes on a Sequential Data File

• Sparse index: one key per data block
• Use less space, but takes more time for search
• Only work with sequential files

10

30

50

70

90

110

130

150

10

20

30

40

50

60

70

80

Sequential file (data file)

Search the sparse
index for the

largest key less
than or equal to K

Unclustered Indexes
• To index other attributes than primary key
• Always dense (why ?)

10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

How to find an index entry efficiently?
10

20

30

40

50

60

70

80

Index
blocks

90

100

110

120

130

140

150

160

170

180

190

200

Data
file

10

50

90

130

170

Second-level
sparse index

B-Trees

B-Trees
• Automatically maintain as many level of index as

is appropriate for the size of the file being
indexed

• Organize its blocks into a tree
– Balanced: all paths from the root to a leaf have the

same length
• Manage the space on the blocks they use so that

every block is between half used and completely
full.
– No overflow blocks are needed

B-Trees: Balanced Trees

• Intuition:
– Give up on sequentiality of index
– Try to get “balance” by dynamic reorganization

• B+trees:
– Textbook refers to B+trees (a popular variant) as B-trees (as

most people do)
– Distinction will be clear later (ok to confuse now)

UIUC (Alumni)
Contribution!

Prof. Rudolf Bayer
Rudolf Bayer studied Mathematics in Munich and at the University of Illinois,

where he received his Ph.D. in 1966. After working at Boeing Research Labs
he became an Associate Professor at Purdue University. He is a Professor of
Informatics at the Technische Universität München since 1972 and … …

The 2001 SIGMOD Innovations Award goes to Prof. Rudolf Bayer of the
Technical University of Munich, for his invention of the B-Tree (with Edward
M. McCreight), of B-Tree prefix compression, and of lock coupling (a.k.a.
crabbing) for concurrent access to B-Trees (with Mario Schkolnick). All of
these techniques are widely used in commercial database products. ……

The Original Publication
Rudolf Bayer, Edward M. McCreight: Organization and Maintenance of

Large Ordered Indices. Acta Informatica 1: 173-189(1972)

• Parameter d = the degree (In the textbook, d/2 is the
parameter n)

• Each node has k keys and k+1 pointers
where d <= k <= 2d keys (except root)

• Each leaf has k keys where d <= k <= 2d:

B-Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

Disk block

Disk block

B-Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2
Ok for the

root to have
only one key

B-Tree Design

• How large d ?
• Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 byes

• 2d * 4 + (2d+1) * 8 <= 4096
• d = 170

Searching a B-Tree
• Exact key values:

– Start at the root
– Proceed down, to the leaf

• Range queries:
– As above
– Then sequential traversal

of the leaf nodes

Select name
From people
Where age = 25

Select name
From people
Where 20 <= age
and age <= 30

Example: Find a record with key 30

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Only 4 blocks
read necessary

B-Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

Big enough
for most

applications

Insertion in a B-Tree

Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, keep K3 too in right node

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

(K3,) to parent

Insertion in a B-Tree

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

Insertion in a B-Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

Insertion in a B-Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

Insertion in a B-Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

Insertion in a B-Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

Insertion in a B-Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

30 40 50

Deletion from a B-Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

30 40 50

Deletion from a B-Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

40 50

May change to
40, or not

Deletion from a B-Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

40 50

Deletion from a B-Tree

80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

40 50

Deletion from a B-Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

40 50

We need to update this key
Because key 19 moves to
the child node on the right

Deletion from a B-Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

50

We no longer need this
key because the third

child is merged.

Deletion from a B-Tree

80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

Final tree

50

