
CS411
Database Systems

Kazuhiro Minami

09: Storage

CS411: Two Perspectives on DBMS
• User perspective

– how to use a database system
• Database design

• Database programming

• System perspective
– how to design and implement a database system

• Storage management

• Query processing

• Transaction management

The Big Picture-- DBMS Architecture

Query Executor

Buffer Manager

Storage Manager

Storage

Transaction Manager

Logging &
Recovery

Concurrency
Control

Buffer:
data, indexes, log, etc

Lock Tables

Main Memory

User/Web Forms/Applications/DBA
query transaction

Query Optimizer

Query Rewriter

Query Parser

Records

data, metadata, indexes, log, etc

DDL Processor

DDL commands

Indexes

Disks
Buffer Manager

The Memory Hierarchy (2008)

Main Memory = Disk Cache
•Volatile
• a few GB
• expensive
• Access time:

10-100 nanosecs

•Persistent
•1 TB storage
• speed:

•Rate=5-10 MB/S
•Access time =

10 msecs.

• 1.5 MB/S transfer rate
• Only sequential access
• Not for operational

data

Processor Cache:
• access time =

1-3 nanosecs.

Disk Tape

The memory hierarchy

The relative gaps in performance are
increasing.

10 msec/
seek

3 sec just to
load a tape

10-100 nsec/
access

Dominance of I/O cost:

A modern microprocessor
can execute millions of
instructions while reading a
block.

1 nsec/
access

The Mechanics of Disk

Mechanical characteristics:
• Rotation speed (5400RPM)
• Number of platers (1-30)
• Number of tracks (<=10000)
• Number of bytes/track(105)

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Buffer Management in a DBMS

• Files are moved between disk and main memory in blocks;
it takes roughly 10 milliseconds

• It is vital that a disk block we are accessing is
already in a buffer pool!

DB

MAIN MEMORY

DISK

disk block

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Buffer Manager
controls which blocks
are in an buffer pool. Representing Data

Terminology in Secondary Storage

Data element Record Collection

SQL attribute tuple relation

Files field record file

How to lay out a tuple (= record)

First guess

pid
4 B

description
200 B

wholesale
1 bit

name
21 B

How to lay out a tuple (= record)

pid
4 B

description
200 B

wholesale
1 bit

name
21 B

Second guess

empty
space

because it is too slow to
parse things that don’t
align with word
boundaries

How to lay out a tuple (= record)

pid
4 B

description
200 B

wholesale
1 bit

name
21 B

Second guess

because it is too slow to parse
things that don’t align with
word boundaries

and some empty space here too

How to lay out a tuple (= record)

pid
4 B

description
200 B

wholesale
1 bit

name
21 B

Third guess

The old way
wasted too much
space

actual

length + 2 B

Even this isn’t quite right. To see why,
let’s look at page layouts.

page

How to lay out a DB page (= block)
DB page/block = multiple of disk block size
In practice, 8 KB or more

First attempt

page

How to lay out fixed-length records
DB page/block = multiple of disk block size
In practice, 8 KB or more

First attempt

tuple/record

tuple/record

tuple/record

tuple/record

free space

We know neither the length of each record or the
size of each field in it

page

How to lay out fixed-length records
DB page/block = multiple of disk block size
In practice, 8 KB or more

Second attempt

Block header: schema, length, timestamp

tuple/record

tuple/record

tuple/record

free space

tuple/record

page

How to lay out variable-length records
DB page/block = multiple of disk block size
In practice, 8 KB or more

First attempt (with detail)

tuple/record

tuple/record

tuple/record

tuple/record

free space

pid descriptionwholesalename

pid descriptionwholesalename

pid descriptionwholesalename

pid descriptionwholesalename

How to find where the 3rd

tuple starts, without parsing
the whole page??

page

How to handle huge records?
DB page/block = multiple of disk block size = 8 KB+
Need a tuple? Fetch its entire page into memory.

First attempt (with detail)

tuple/record

(no) free space
What if one tuple is
so big it won’t fit on a
single page?

What if a tuple has
multimedia, e.g., mp3?

How to lay out variable-length records

page

tuple/record

block header
(20 B)

free space

one (offset, length) pair for each
record on the page (4 B each)

tuple/record

Refer to a tuple as (page#, i) for its entire lifetime,
even though the DBMS rearranges page contents

How to lay out variable-length records

page

tuple/record

page header
(20 B)

free space

(offset1, length1)
(offset2, length2)

tuple/record

Refer to a tuple as (page#, offset id) for its entire
lifetime, even though the DBMS rearranges page
contents

Why rearrange a DB page?

page

tuple/record

page header
(20 B)

free space

(offset1, length)
(offset2, length)

tuple/record

updated tuple/record

In most DBMSs, all the tuples on a page will
be from the same relation.

Eventually the free space may be so
fragmented that you’ll need to defragment

page

Tuple 1 on this page

block header

free space

(offset, length) pairs

Tuple 3

Tuple 6 on this page Tuple 2 on this page

Tuple 4 on this page

In practice, that doesn’t happen very often,
because most applications tend to get more

and more data.

What if a tuple no longer fits on the page?

page

tuple/record

page header

free space

(offset1, length1), (offset2, length2),
(offset3, length3), (offset4, length4)

tuple 2

updated tuple 1

tuple 3

tuple 4

What if a tuple no longer fits on the page?

pagepage header

free space

(offset1, length1), (offset2, length2),
(offset3, length3), (offset4, length4)

tuple 2

tuple 3

tuple 4

If you just move it to a new page, you must find & fix
the dangling “pointers” to it in indexes & memory.

updated tuple 1 will move to page 6

(-1, -1)

Some DBMSs leave a forwarding
address instead (I think)

pagepage header

free space

(offset1, length1), (offset2, length2),
(offset3, length3), (offset4, length4)

tuple 2

tuple 3

tuple 4

Don’t need to find/fix dangling pointers, but every
access to the relocated tuple will take twice as long

updated tuple 1 will move to the first offset entry on page 6

(6, #1)

Where do Binary Large Objects
(BLOBs) go? (mp3s, jpegs, …)

page

tuple/record

page header
(20 B)

free space

(offset1, length1)
(offset2, length2)

tuple/record

page just for blob data, nothing else
page just for blob data, nothing else
(blob pages have their own special format)

The pages of a blob aren’t automatically fetched
when its parent tuple is fetched from disk.

What about tuples bigger than a page?

pagepage header

free space

(offset1, length1)
spanned tuples

tuple 1

You should seriously consider changing the DB page size.

pagepage header

free space

(offset1, length1), (offset2, length2)

tuple 2

tuple 1

Record Modifications

Insertions are easy if the file isn’t stored
sorted on some field (e.g., primary key)

page 1

Put the new tuple at the end of the file.

page 3page 2

page 4 page 5 page 6

new tuple

If the file is stored sorted on some field,
then the DBMS has to put it in the right

place.
page 1

But what if there is no room on that page?

page 3page 2

page 4 page 5 page 6

new tuple

The DBMS can try to rearrange nearby
pages to make room.

page 3page 2

page 4

tuple 0
tuple 1
tuple 2 tuple 5

tuple 3

tuple 6

tuple 7

tuple 4
page 1

page 5 page 6

But those pages may be filled also. 34

An alternative is to create an overflow
page for the too-full page.

page 3page 2

page 4

tuple 0
tuple 1
tuple 2 tuple 5

tuple 3

tuple 6

tuple 7

page 1

page 5 page 6

To keep good performance, the DBMS must occasionally
rebuild the entire file to merge in the overflow pages.

page 3
overflow

tuple 4

In reality, deletions are rare in DB apps.
But if you have a deletion:

– Free up space in its block
– Possibly eliminate an overflow block
– Can’t shrink the (offset, length) array, but may be able

to recycle the old tuple’s slot for a new tuple

What if indexes/logs/other things may still point to
the deleted record?
– Place a tombstone instead (a NULL record, or a

special (offset, length) entry)

