

Midterm Details

- 3:30pm next Tuesday on October 13
- 75 minutes (regular class time slot)
- Please arrive early
- Bring UIUC photoid, pen, pencil, eraser
- Closed book, no notes
- Closed book, no noter

E/R Mode Basics

- What are three basic elements in E/R model? How do we represent them in E/R diagrams?
- How do we express a key of an entity set?
- What types of multiplicity constraints on relationships? How do we express each of them?
- What type of multiplicity constraint can we specify on a multi-way relationship?
- What is a weak entity set? How do we express a weak entity set and supporting relationships?
- What is a isa relationship? What's the difference from ordinary relationships?
- Where can you find the keys of subclasses in a isa hierarchy?
- In what situations do you want to define a set of attributes rather than introducing a new entity set?

Suggested Method of Study

- Go over the lecture slides
- Read the textbook
- Work on problems in hw/lectures
- Work on sample exams (see course Web)

E/R Diagrams to Relation Schemas

- How to translate an entity set into a relation?
- How to translate a relationship into a relation?
- How to translate a weak entity set?
- How to translate entity sets in a isa hierarchy?
- Do you know three different strategies?
- Do you know the advantages and disadvantages among them?
- Do we need to translate isa relationships into relations?
- In what situations can we combine relations?

Relational Schema Design

- What is a keys and a super key?
- What is a functional dependency?
- How to compute the closure of a set of attributes given FDs?
- How to use
- How to determine keys given functional dependencies?
- How to use Armstrong's Axioms and compute a closure of FDs?
- What are update and deletion anomalies? Why are they bad?
- What is BCNF?
- How to decompose relation into BCNF?
- Is BCNF decomposition lossless?
- What is 3NF? How is it different from BCNF?
- Is 3NF decomposition lossless?
- What are tradeoffs between BCNF and 3NF?
- What's a multi-valued dependency? Is it related to a FD in some way?
- What is the relationship between BCNF and 4NF?

Functional Dependency is a function whose exact formula we don't know

- Suppose that we want to define a function, but don't know the exact formula (i.e., $Y=f(X)$).
- The best we can do is to store input-output pairs of the function in a table.

- Since f is a function, the same value of X is always mapped to the same value of Y .
- Therefore, we don't want to have two tuples with the same value of X .

We have redundant data when the table stores information on two different functions

- Now let's try to store information on another function $\mathrm{Z}=\mathrm{g}(\mathrm{Y})$ in the same table.
- A key constraint ensures that X is unique in each row.
- But, we don't have the same guarantee for Y.
- Notice that we have two duplicate tuples $(\mathrm{Y}, \mathrm{Z})=(2,3)$.
- This is a kind of redundancy we want to remove using BCNF decomposition.
- Notice that if function f is one-one, we do not have this problem. 12

Another Situation Having Redundant Data

- Here is a situation where we have redundancy even if a function f is one-one.
- Suppose that we maintain information on two functions $Z=f(X, Y)$ and $W=g(Y)$

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{w}	• Notice that we have two duplicate tuples (Y, W)
1	2	3	5	5).
2	2	3	5	
3	4	5	3	

Decompose R into a set of relations

 in BCNF- $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ with FD's $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}$, and D \rightarrow A

First, check whether R is in BCNF.

A relation R is in BCNF if whenever there is a nontrivial FD $A_{1} \ldots A_{n} \rightarrow B$ for R, $\left\{A_{1} \ldots A_{n}\right\}$ is a superkey for R.

If the parameters of a function h contains a key, the table stores h with no redundancy

- We consider the table maintaining information $Y=f(X)$ and $Z=$ $\mathrm{g}(\mathrm{Y})$ again.
- We consider that the table maintain information on another function $\mathrm{Z}=\mathrm{h}(\mathrm{X}, \mathrm{Y})$ such that $\mathrm{h}(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\mathrm{Y})$.

-We don't see any redundancy for maintaining information on function h. Why?
- X has a different value in each row, and thus (X, Y) is unique in each row as well.
- This corresponds to the fact that a FD whose left side attributes are a super key is OK.

1. Find keys of R

$\cdot R(A, B, C, D)$ with $F D$'s $A B \rightarrow C, C \rightarrow D$, and $D \rightarrow A$

Strategy: Compute the closure of every subset of attributes in R

$\{\mathrm{A}\}^{+}=\{\mathrm{A}\}$	$\{\mathrm{C}, \mathrm{D}\}^{+}=\{\mathrm{C}, \mathrm{D}, \mathrm{A}\}$
$\{\mathrm{B}\}^{+}=\{\mathrm{B}\}$	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}^{\dagger}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
$\{\mathrm{C}\}^{+}=\{\mathrm{C}, \mathrm{D}, \mathrm{A}\}$	$\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
$\{\mathrm{D}\}^{+}=\{\mathrm{D}, \mathrm{A}\}$	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}^{+}=\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}$
$\{\mathrm{A}, \mathrm{B}\}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$	$\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}^{\dagger}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
$\{\mathrm{A}, \mathrm{C}\}^{+}=\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}$	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}{ }^{\dagger}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
$\{\mathrm{A}, \mathrm{D}\}^{+}=\{\mathrm{A}, \mathrm{D}\}$	
$\{\mathrm{B}, \mathrm{C}\}\}^{\dagger}=\{\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{A}\}$	
$\{\mathrm{B}, \mathrm{D}\}^{+}=\{\mathrm{B}, \mathrm{D}, \mathrm{A}\}$	

2. Check whether R is in BCNF

- $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ with FD's $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}$, and $\mathrm{D} \rightarrow \mathrm{A}$

Compare attributes on the left of each rule with two keys $\{\mathrm{A}, \mathrm{B}\}$ and $\{\mathrm{B}, \mathrm{C}\}$

Q: Are there any FDs violating BCNF condition?
$\mathrm{C} \rightarrow \mathrm{D}$ and $\mathrm{D} \rightarrow \mathrm{A}$

3. Decompose R

Let's pick $\mathrm{C} \rightarrow \mathrm{D}$ and decompose $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ into R 1 and R2.

Q: What are the schemas of R1 and R2?

Q: Is R2 in BCNF? Yes, but why?
Q: Is R1 in BCNF? We need to repeat the same process.

4. Find all non-tri Do we only need to consider
 R1 (A this FD?

- R1(A, B, C) with FD's $A B \rightarrow C, C \rightarrow D$, and $\mathrm{D}, 1$ 1. Start with $\{\mathrm{C}\}$

2. Apply $C \rightarrow D$, and get $\{C, D\}$

Compute th \quad 3. Apply D \rightarrow A and get $\{\mathrm{C}, \mathrm{D}, \mathrm{A}\} \quad$ putes in R1
4. Project $\{\mathrm{C}, \mathrm{D}, \mathrm{A}\}$ onto $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ and get $\{\mathrm{C}, \mathrm{A}\}$
$\{\mathrm{A}\}^{+}=\{\mathrm{A}\}$
$\{\mathrm{B}\}^{+}=\{\mathrm{D}\}$
$\{C\}=\{C, A\}$
$\{A, B\}^{+}=\{A, B, C\}$
$\{\mathrm{A}, \mathrm{C}\}^{+}=\{\mathrm{A}, \mathrm{C}\}$
$\{\mathrm{B}, \mathrm{C}\}^{+}=\{\mathrm{B}, \mathrm{C}, \mathrm{A}\}$
$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$

Q: What are non FD's?

$$
\mathrm{C} \rightarrow \mathrm{~A},
$$

$$
\mathrm{AB} \rightarrow \mathrm{C}
$$

$$
\mathrm{BC} \rightarrow \mathrm{~A}
$$

5. Decompose R1

- R1(A, B, C) with FD's $C \rightarrow A, A B \rightarrow C$, and $B C \rightarrow A$

Q: What are keys of $R 1$? $\quad\{A, B\}$ and $\{B, C\}$.
Q: Which FD violate BCNF condition? $\quad \mathrm{C} \rightarrow \mathrm{A}$

We decompose R1 into R11(A, C) and R12(B, C), which are in BCNF. Thus, R is decomposed into R2(C, D), R11(A, C), and R12(B, C).

Q: By the way, is R1 in 3NF? Yes because A is a prime.

When BCNF Decomposition Breaks FDs?

- We say that a decomposition is NOT dependency-preserving if we cannot check each FD with decomposed relations.
-Suppose that R(A, B, C) with FDs: A, B $->$ C, C->B.
\cdot By using $C->B$, we get R1(B, C) and R2(A,B).
-Therefore, we cannot check A,B -> C with R1 and R2.

Primary Goal of 3NF

- Preserve FDs of the initial relation R with docomposed relations R_{1}, \ldots, R_{n}.
- Try to minimize redundancy as long as the first goal is achieved.

3rd Normal Form

R is in 3NF
if for every nontrivial FD A $A_{1}, \ldots, A_{n} \rightarrow B$, either $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey, or B is part of a kev.

Weakens BCNF.

Basic Approach for 3NF Decomposition

- Create a relation for each FD
- E.g., If A->B, then create R(A, B)
- But, we want to minimize the number of such relations
- Thus, we find a minimum set of FDs, from which we can derive all FDs.
- E.g., If A->B, B->C, we don't need to worry about A -> C. Thus, A->C is not part of the minimum set.
- All the FD in the minimum set has nice form:
$-\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}->\mathrm{B}$ where no FDs on the left and a single attribute on the right

Is a decomposed relation in BCNF?

- If $A_{1}, \ldots, A_{\mathrm{n}}->\mathrm{B}$ in the minimum set, then we create $R\left(A_{1}, \ldots, A_{n}, B\right)$.
- There is no FDs among A_{1}, \ldots, A_{n}.
- What type of FD will violate BCNF?
- B -> A_{i}, \ldots, A_{j} where $\left\{A_{i}, \ldots, A_{j}\right\}\left\{A_{1}, \ldots, A_{n}\right\}$
- If we apply BCNF decomposition with the above FD, we break, $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$-> B will be broken.
- Recall the primary goal of 3NF.
- Then, let's stop here and find what property FD: B -> $\mathrm{A}_{\mathrm{i}}, \ldots, \mathrm{A}_{\mathrm{j}}$ has

Relational Algebra

- What are basic five operators in RA?
- What are derived operators?
- Do you know the symbols of the operators and what they do?
- How to define each derived operator with the basic ones? - What are theta-join and natural join?
- How to express the minimum value in $\mathrm{R}(\mathrm{a})$?

Which products are available only at a single store?

R(ProductName, Store, ID)

ProductName	StoreID
Bread	2
Cheese-Cheddar	4
Cheese-Cheddar	5

Find all the store names whose products in their inventories are a subset of the inventory of some other store?

T(ProductName, StoreName)

ProductName	StoreName
Bread	WalMart
Cheese-Cheddar	Meijer
Cheese-Cheddar	Schnucks
Lettuce	Meijer

Your answer should be "Schnucks"

SQL

- What are the three clauses in a SQL query statement?
- How to express a single relation query in SQL with RA?
- Do you know how conditions involving NULL are evaluated?
- Do you know how to disambiguate attribute names in the WHERE clause when the FROM clause contain multiple relations?
- Do you understand the semantics (meaning) of a multi-relation query in SQL in two different ways?
- What if a query needs two copies of the same relation?
- In which clauses can we use subqueries?
- Can you use IN, ALL, ANY, and EXISTS operators on the result relation of a subquery?
- How to express set operations such as union, intersect, and set difference in SQL?
- Which operations in SQL support bag semantics?
- Which operations in SQL support set semantics?
- How to remove duplicate tuples from the result of a SQL query?
- Do you known when a correlated subquery is evaluated?

Online bookstore: Building a Recommendation Engine

Buy(tid, cid, isbn, year, month, day), FriendsOfBob(cid)
Q: Make a list of recommended books (i.e., a list of isbn attribute values in Book) for Bob using view FriendsOfBob. We recommend a book for Bob if his possible friend in FriendsOfBob bought that book before and Bob has not bought that book yet.

Online bookstore: Building a Recommendation Engine

Buy(tid, cid, isbn, year, month, day)
Q: Create a view FriendsOfBob that contains a list of people (i.e., a list of cid attribute values in Customer) who share a common interest with Bob whose cid $=12345$. We consider that two persons share a common interest if they purchased more than 20 same books before.

SQL Aggregation/Grouping

- What are five aggregation function in SQL?
- How aggregations in SQL handle NULL values? Is there any difference among the functions?
- How to partition the result relation in a SQL query into multiple groups?
- Where can you define conditions on each group?
- Which attributes can you refer to in the HAVING clause?
- Which attributes can you include in the SELECT clause?
- In which clauses can you use aggregate functions?
- How to write insertion, deletion, and update statements in SQL?
- How to create a new table in SQL?
- What is a view?
- Why some views are not updatable?

Constraints and Triggers

- What's the major difference between constraints and triggers?
- What are example constraints in SQL?
- How primary keys and a set of attributes declared as UNIQUE handle NULL values differently?
- In which situations a foreign-key constraint could be violated?
- What are three strategies to prevent dangling tuples?
- When an attribute-based or tuple-based CHECK evaluated?
- In what situations a DBMS cannot enforce the conditions in CHECKs?
- When are the condition in an ASSERTION checked?
- What are events in a TRIGGER statement?
- What is the difference between statement-level triggers and row-level ones?

