
CS411
Database Systems

Kazuhiro Minami

07: SQL System Aspects

2

System Aspects of SQL
(Chapter 9: Four more ways to make SQL calls
from outside the DBMS)

Call-Level Interface
PHP
Java Database Connectivity

Stored procedures
Embedded SQL

Connecting SQL to the Host Language

• Outside
– API Approach:

• Vendor specific libraries[80’s-]
– MySQL API for PHP

• Open interfaces [90’s -]
– JDBC, ODBC

• Embedded SQL [70’s-]
• Embedded SQL for C/C++.
• Not widely used.

• Inside
– Stored procedures/functions: [80’s-]

SQL/Host Language Interface (CLI)

Function call SQL
Library

Host language program

SQL stmt

DBMS

Prepare SQL statements
from user inputs

Fetch rows
from the cursor

TableCursorwhile(1){

} Impedance
mismatch
problem

The Three-Tier Architecture
of Database Applications

browser

network
HTTP

Web server

Application
server

Database server

database

Server

Forms &
Buttons

Your business logic
is executed here

Display
query result

Client &
Server

Interaction

MySQL + PHP

What is PHP?

• Stands for Hypertext Preprocessor
• A server-side scripting language
• PHP scripts are executed on the server
• Supports many databases (MysQL, Infomix,

Oracle, etc.)

7

What is a PHP file?

• Contain text, HTML tags and scripts
• PHP files are returned to a browser as plain

HTML
• Have a file extension of “.php”

8

Steps for writing a DB application

1. SSH to a csil Linux machine (e.g., csil-linux-ts1)
2. Login to MySQL server

% mysql -h csil-projects.cs.uiuc.edu -u netid –p

3. Choose a database
mysql > use <your database>;

4. Create a table “hello”
mysql > CREATE TABLE hello (varchar(20));

5. Insert a tuple
mysql > INSERT INTO hello VALUES (‘Hello World!’);

6. Quit MySQL
mysql > quit

9

Set up a table

Steps for writing a DB application

1. Go to the directory ~/csil-projects/public_html
% cd csil-projects/public_html

2. Write hello_world.php
3. Open http://csil-

projects.cs.uiuc.edu/~username/hello_world.php
with a web brower

10

Write a PHP program

hello_world.php
<html>
<body>
<?php
$host = 'csil-projects.cs.uiuc.edu';
$user = 'minami'; $password = ’password';
$link = mysql_connect($host, $user, $password) or die ('Could not

connect: ' . mysql_error());
mysql_select_db('minami_db') or die ('Could not select database
');
$query = 'SELECT * FROM hello';
$result = mysql_query($query);
while ($row = mysql_fetch_array($result)) {

echo ”$row[message]
”;
}
mysql_free_result($result);
mysql_close($link);
?>
</body>
</html>

11

PHP Basics
• All PHP code exist inside HTML text

<?php
PHP code goes here

?>

• Variables
– Untyped and need not be declared
– Begins with ‘$’

• Strings
– Surrounded by either single or double quotes

• $host = 'csil-projects.cs.uiuc.edu’;
• $x = ‘A host is $host.’
• $x = “A message is $host.”

– Concatination of strings
• 'Could not connect: ' . mysql_error()

12

PHP Basics (Cont.)

• Arrays
– Ordinary arrays

• $a = array(30, 20, 10, 0) with $a[0] equal to 30,
$a[1] equal to 20 and so on

– Associative arrays
• $seasons = array(‘spring’ => ‘warm’,

‘summer’ => ‘hot’,
‘fall’ => ‘warm’,
‘winter’ => ‘cold’);

Then, seasons[‘summer’] has the value ‘hot’.

13

Creating a Database Connection
• Before you can access data in a database, you

must create a connection to the database
• Syntax: mysql_connect(servername, username,

password);
• Example:
<?php
$con = mysql_connect("localhost",”user",”pwd");
if (!$con) { die('Could not connect: ' . mysql_error()); }//

some code
?>

14

Executing SQL Statements

• Choose a database
mysql_select_db('minami_db')

or die ('Could not select database
');

• Execute a SQL statement
$query = 'SELECT * FROM hello';
$result = mysql_query($query);

15

Cursor Operations: Fetching results

• Use the mysql_fetch_array() function to return the first row from
the recordset as an array.

• Each call to mysql_fetch_array() returns the next row in the
recordset.

• The while loop loops through all the records in the recordset.
• To refer to the value of “message” attribute, we use the PHP $row

variable ($row[message]).

while ($row = mysql_fetch_array($result)) {
echo ”$row[message]
”;

}

16

Insert Data From a Form Into a Database
• When a user clicks the submit button in the

HTML form, the form data is sent to "insert.php".

<html>
<form action="insert.php" method="post">
ISBN: <input type="text" name="isbn" />
Title: <input type="text" name="bname" />
<input type="submit" / value="Add">
</form>
</html>

17

Insert Data From a Form Into a Database
• The "insert.php" file connects to a database, and

retrieves the values from the form with the PHP
$_POST variables.

$book = $_POST["bname"];
$isbn = $_POST["isbn"];
$sql = "INSERT INTO book(isbn, name) VALUES ($isbn, '$book')";
mysql_query($sql))

18

JDBC

20

All these methods follow the basic PHP
paradigm

1. Connect to a DB server.
2. Say what database you want to use.
3. Assemble a string containing an SQL

statement.
4. Get the DBMS to prepare a plan for

executing the statement.
5. Execute the statement.
6. Extract the results into variables in the

local programming language.

JDBC
• Java Database Connectivity (JDBC) is a library

similar to SQL/CLI, but with Java as the host
language.

• JDBC/CLI differences are often related to the
object-oriented style of Java, but there are other
differences.

The brainchild of a former UIUC undergrad

Connections

• A connection object is obtained from the
environment in a somewhat implementation-
dependent way.

• We’ll start by assuming we have myCon, a
connection object.

Statements

• JDBC provides two classes:
1. Statement = an object that can accept a string that is

an SQL statement and can execute such a string.
2. PreparedStatement = an object that has an associated

SQL statement ready to execute.

Creating Statements

• The Connection class has methods to create
Statements and PreparedStatements.

Statement stat1 = myCon.createStatement();
PreparedStatement stat2 =

myCon.createStatement(
“SELECT beer, price FROM Sells” +
“WHERE bar = ‘Joe’’s Bar’”

);

Java trick: +
concatenates
strings.

createStatement with no argument returns
a Statement; with one argument it returns
a PreparedStatement.

Executing SQL Statements

• JDBC distinguishes queries from
modifications, which it calls “updates.”

• Statement and PreparedStatement each have
methods executeQuery and executeUpdate.
– For Statements, these methods have one

argument: the query or modification to be
executed.

– For PreparedStatements: no argument.

Example: Update

• stat1 is a Statement.
• We can use it to insert a tuple as:
stat1.executeUpdate(

“INSERT INTO Sells” +
“VALUES(‘Brass Rail’, ‘Bud’, 3.00)”

);

Example: Query
• stat2 is a PreparedStatement holding the query

“SELECT beer, price FROM Sells WHERE bar =
‘Joe’’s Bar’”.

• executeQuery returns an object of class ResultSet
--- we’ll examine it later.

• The query:
ResultSet Menu = stat2.executeQuery();

Accessing the ResultSet
• An object of type ResultSet is something like a

cursor.
• Method Next() advances the “cursor” to the next

tuple.
– The first time Next() is applied, it gets the first tuple.
– If there are no more tuples, Next() returns the value

FALSE.

Accessing Components of Tuples

• When a ResultSet is referring to a tuple, we can
get the components of that tuple by applying
certain methods to the ResultSet.

• Method getX (i), where X is some type, and i is
the component number, returns the value of that
component.
– The value must have type X.

Example: Accessing Components

• Menu is the ResultSet for the query “SELECT beer,
price FROM Sells WHERE bar = ‘Joe’’s Bar’”.

• Access the beer and price from each tuple by:
while (Menu.Next()) {
theBeer = Menu.getString(1);
thePrice = Menu.getFloat(2);

/* do something with theBeer and
thePrice */

}

