
CS411
Database Systems

Kazuhiro Minami

06: SQL

Constraints & Triggers

Foreign Keys
Local and Global Constraints

Triggers

Integrity Constraints in SQL

• New information added to a database could
be wrong in a variety of ways
– Typographical or transcription errors in manually

entered data
• Difficult to write application programs to check

the integrity (correctness) of data on every
insertion, deletion, and update command.

• SQL provides a variety of techniques for
expressing integrity constraints as part of the
database schema

Constraints and Triggers

• A constraint is a relationship among
data elements that the DBMS is required
to enforce.
– Example: key constraints.

• Triggers are only executed when a
specified condition occurs, e.g., insertion
of a tuple.
– Easier to implement than many constraints.

Kinds of Constraints

• Keys
• Foreign-key, or referential-integrity
• Value-based constraints

– Constrain values of a particular attribute
• Tuple-based constraints

– Relationship among different attribute values
• Assertions: any SQL boolean expression

Foreign Keys

Sells(bar, beer, price)
• We might expect that a beer value is a

real beer --- something appearing in
Beers.name .

• A constraint that requires a beer in Sells
to be a beer in Beers is called a foreign -
key (referential integrity) constraint.

Foreign-key Constraints Corresponds
to Referential Integrity Constraints

in E/R modeling

BeersSells sells

Example

Sells Beers

Blind pig Super Dry $3
Blind pig Samuel Adams $4

bar beer price
Super Dry Asahi
name manf

Violation of the
foreign-key constraint

Expressing Foreign Keys
• Use the keyword REFERENCES, either:

1. Within the declaration of an attribute, when only one
attribute is involved.
REFERENCES <relation> (<attributes>)

1. As an element of the schema, as:
FOREIGN KEY (<list of attributes>)

REFERENCES <relation> (<attributes>)
• Referenced attributes must be declared

PRIMARY KEY or UNIQUE

Example: With Attribute

CREATE TABLE Beers (
name CHAR(20) PRIMARY KEY,
manf CHAR(20));

CREATE TABLE Sells (
barCHAR(20),
beer CHAR(20) REFERENCES Beers(name),
price REAL);

Foreign key

Referenced attribute

Example: As Element
CREATE TABLE Beers (
name CHAR(20) PRIMARY KEY,
manf CHAR(20));

CREATE TABLE Sells (
bar CHAR(20),
beer CHAR(20),
price REAL,
FOREIGN KEY(beer) REFERENCES

Beers(name));

Foreign-key definition

Enforcing Foreign-Key Constraints

If there is a foreign-key constraint from
attributes of relation R to the primary key
of relation S, two violations are possible:

1. An insert or update to R introduces
values not found in S.

2. A deletion or update to S causes some
tuples of R to “dangle.”

R S

foreign
key

Referenced
attributes

Case 1: Insertion or Update to R

Sells (= R) Beers (= S)

Blind pig Super Dry $3

bar beer price
Super Dry Asahi

name manf

Blind pig Samuel Adams $4

Dangling
tuple

Actions Taken -- 1

• An insert or update to Sells that
introduces a nonexistent beer must
be rejected.

Case 2: Deletion or Update to
S

Sells (= R) Beers (= S)

Blind pig Super Dry $3

bar beer price
Super Dry Asahi

name manf

Blind pig Samuel Adams $4

The second tuple in Sells has
become dangle.

Samuel Adams The Boston

Beer Company

Actions Taken -- 2

The three possible ways to handle beers
that suddenly cease to exist are:

1. Default : Reject the modification.
2. Cascade : Make the same changes in

Sells.
- Deleted beer: delete Sells tuple.
- Updated beer: change value in Sells.

3. Set NULL : Change the beer to NULL.

Cascade Strategy

• Suppose we delete the Bud tuple from
Beers.
– Then delete all tuples from Sells that have

beer = ’Bud’.

• Suppose we update the Bud tuple by
changing ’Bud’ to ’Budweiser’.
– Then change all Sells tuples with beer =

’Bud’ so that beer = ’Budweiser’.

Example: Cascade

Sells Beers

Blind pig Super Dry $3
bar beer price name manf

Blind pig Samuel Adams $4

Super Dry Asahi
Samuel Adams The Boston

Beer Company

BitterBitter

Example: Set NULL

• Suppose we delete the Bud tuple from
Beers.
– Change all tuples of Sells that have beer =

’Bud’ to have beer = NULL.

• Suppose we update the Bud tuple by
changing ’Bud’ to ’Budweiser’.
– Same change.

Example: Set NULL

Sells Beers

Blind pig Super Dry $3
bar beer price name manf

Blind pig Samuel Adams $4

Super Dry Asahi
Samuel Adams The Boston

Beer Company

BitterNULL

NULL

When you create the table, specify which
of the three options you want to use.

CREATE TABLE Customers (
customerName CHAR(20) REFERENCES MasterList(name)
ON DELETE CASCADE,

city CHAR(20),
state CHAR(2),
zip CHAR (5),
FOREIGN KEY (city, state, zip)

REFERENCES GoodAddresses (city, state, zip)
ON UPDATE CASCADE ON DELETE SET NULL

);

CREATE TABLE Customers (
customerName CHAR(20) REFERENCES MasterList(name)
ON DELETE CASCADE,

city CHAR(20),
state CHAR(2),
zip CHAR (5),
FOREIGN KEY (city, state, zip)

REFERENCES GoodAddresses (city, state, zip)
ON UPDATE CASCADE ON DELETE SET NULL

);

Default: reject all
UPDATEs to MasterList
that violate referential

integrity

Attribute-Based Checks:
You can also check an attribute value

at INSERT/UPDATE time

CREATE TABLE Sells (
bar CHAR(20),
beer CHAR(20) CHECK (beer IN

(SELECT name FROM Beers)),
price REAL CHECK (price <= 5.00)

);

Use a subquery if
you need to mention

other attributes or
relations

CHECK is never equivalent to a
foreign key constraint.

Employee
Name

Department Hourly
Wage

Winslett Toy 10.00

Name
Toy
Complaint
Development

Employees
Departments

Name
Complaint
Development

With a FOREIGN KEY

constraint, the change in
Departments will be reflected in

Employees.

With CHECK, the change in Departments will
not be reflected in Employees.

Tuple-Based Checks:
You can also check a combination of

attribute values at INSERT/UPDATE time

• Only Joe’s Bar can sell beer for more than $5:
CREATE TABLE Sells (

bar CHAR(20),
beer CHAR(20),
priceREAL,
CHECK (bar = ’Joe’’s Bar’ OR

price <= 5.00)
);

For more complex constraints,
declare standalone ASSERTIONs.

CREATE ASSERTION assertionName
CHECK (condition);

No bar can charge more than $5 on average for beer.

CREATE ASSERTION NoExpensiveBars CHECK (
NOT EXISTS (

SELECT bar
FROM Sells
GROUP BY bar
HAVING 5.00 < AVG(price)

));

CREATE ASSERTION NoExpensiveBars CHECK (
NOT EXISTS (

SELECT bar
FROM Sells
GROUP BY bar
HAVING 5.00 < AVG(price)

));

Bars with an
average price
above $5

There cannot be more bars
than drinkers.

Drinkers(name, addr, phone)
Bars(name, addr, license)

CREATE ASSERTION FewBars CHECK (
(SELECT COUNT (*) FROM Bars) <=
(SELECT COUNT (*) FROM DRINKERS)

);

CREATE ASSERTION FewBars CHECK (
(SELECT COUNT (*) FROM Bars) <=
(SELECT COUNT (*) FROM DRINKERS)

);

In theory, every ASSERTION is
checked after every INSERT/

DELETE/ UPDATE.
In practice, the DBMS only has to check

sometimes:
• Adding a drinker can’t violate FewBars.
• Removing a bar can’t violate NoExpensiveBars.
• Lowering a beer price can’t violate

NoExpensiveBars.

But is the DBMS smart enough to figure this out?

You can help your not-so-smart DBMS
by using TRIGGERs instead of

ASSERTIONS.

A trigger is an ECA rule:

When Event occurs
If Condition doesn’t hold
Then do Action

E.g., an INSERT /
DELETE / UPDATE

to relation R

Any SQL Boolean
condition

Any SQL statements

You can use triggers to code
very complex stuff.

• You can allow your users to update their views
--- but you catch their updates and rewrite
them to behave the way you want, avoiding
view anomalies.

• You can encode new strategies for handling
violations of constraints, different from what
the DBMS offers.

If someone inserts an unknown beer into
Sells(bar, beer, price), add it to Beers

with a NULL manufacturer.

CREATE TRIGGER BeerTrig
AFTER INSERT ON Sells
REFERENCING NEW ROW AS NewTuple
FOR EACH ROW
WHEN (NewTuple.beer NOT IN

(SELECT name FROM Beers))
INSERT INTO Beers(name)

VALUES(NewTuple.beer);

The event

The condition

The action

Syntax for naming the trigger

CREATE TRIGGER name

CREATE OR REPLACE TRIGGER name
Useful when there is a trigger with that name and

you want to modify the trigger.

Syntax for describing the condition

BEFORE
AFTER
INSTEAD OF

INSERT
DELETE
UPDATE
UPDATE ON attribute

ON relationName

Only if the
relation is a view

Take one element from each of the three columns:

You can execute a trigger once
per modified tuple, or once per

triggering statement.
• Statement-level triggers execute once for

each SQL statement that triggers them,
regardless of how many tuples are
modified.

• Row level triggers are executed once for
each modified tuple.

The default

Request explicitly by including
FOR EACH ROW

Your condition & action can refer to the
tuples being inserted/deleted/updated

• INSERT statements imply a new tuple (for row-
level) or new set of tuples (for statement-level).

• DELETE implies an old tuple (row-level) or table
(statement-level).

• UPDATE implies both.
Syntax:
REFERENCING [NEW OLD][ROW TABLE] AS

name
Pick one Pick one

“No raise over 10%.”

No condition

Any boolean-valued Condition is
ok in WHEN Condition.

BEFORE
AFTER
INSTEAD OF

INSERT
DELETE
UPDATE
UPDATE OF attribute

ON relationName

Evaluate the condition
on the instance before

the event

Evaluate the condition
on the instance after

the event

The Action is a sequence of SQL
statements (modifications).

Surround them by BEGIN . . . END if there is
more than one.

But queries make no sense in an action, so
we are really limited to modifications.

Remember bars that raise the price of a
beer by > $1.

CREATE TRIGGER PriceTrig
AFTER UPDATE OF price ON Sells
REFERENCING

OLD ROW AS old
NEW ROW AS new

FOR EACH ROW
WHEN (new.price > old.price + 1.00)
INSERT INTO NastyBars

VALUES(new.bar);

The event =
changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > $1

When the price change
is great enough, add
the bar to NastyBars

Sells(bar, beer, price) NastyBars(bar)

Triggers are great for
implementing view updates.

• We cannot insert into Developers --- it is
a view.

• But we can use an INSTEAD OF trigger
to turn a (name, project) triple into an
insertion of a tuple (name,
`Development’, project) to Employee.

Example: Updating Views
How can I insert a tuple into a table that doesn’t exist?

Employee(ssn, name, department, project, salary)

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

INSERT INTO Developers
VALUES(“Joe”, “Optimizer”)

INSERT INTO Developers
VALUES(“Joe”, “Optimizer”)

INSERT INTO Employee
VALUES(NULL, “Joe”, NULL, “Optimizer”, NULL)

INSERT INTO Employee
VALUES(NULL, “Joe”, NULL, “Optimizer”, NULL)

If we make the
following insertion:

It becomes:

This must be
“Development”

Allow insertions into Developers

CREATE TRIGGER AllowInsert
INSTEAD OF INSERT ON Developers
REFERENCING NEW ROW AS new
FOR EACH ROW
BEGIN

INSERT INTO Empolyees(name, department, project)
VALUES(new.name, `Development’, new.project);
END;

