
CS411
Database Systems

Kazuhiro Minami

06: SQL

Modifications

Three ways to change the
instance of a database:

INSERT new tuples
DELETE existing tuples
UPDATE existing tuples

Add to Likes(drinker, beer)
the fact that Sally likes Bud.

INSERT INTO Likes
VALUES (‘Sally’, ‘Bud’);

or
INSERT INTO Likes(beer, drinker)
VALUES (‘Bud’, ‘Sally’);

INSERT INTO Likes(beer)
VALUES (‘Bud’);

Which is better? The

second one. Why? It’s

harder to screw up.

What will this do? Add

a tuple with NULLs to

the drinker attribute.

You can insert lots of tuples at
once, using a subquery

INSERT INTO relation
(subquery);

Find Sally’s potential friends: drinkers
who go to some bar that Sally goes to.

INSERT INTO SallysPotentialFriends
(SELECT d2.drinker
FROM Frequents d1, Frequents d2
WHERE d1.drinker = ‘Sally’ AND

d2.drinker <> ‘Sally’ AND
d1.bar = d2.bar

);

Pairs of Drinker
tuples where the
first is about Sally,
the second is about
someone else,
and the bars are
the same.

The other
drinker

Frequents(drinker, bar)

Exercise: Avoid inserting
duplicate tuples

Our cs411 bookstore purchased another online book store
Amazon.
Insert tuples in Amazon_Books(isbn, title) into
CS411_Books(isbn, title) without making duplicate tuples.

You can delete all tuples that
satisfy a WHERE clause.

Likes(drinker, beer)
Delete the fact that Sally likes Bud:

DELETE FROM Likes
WHERE drinker = ‘Sally’ AND

beer = ‘Bud’;

Must specify conditions on tuples to be deleted

Delete all beers made by manufacturers
who make more than one beer.

Beers(name, manf)

DELETE FROM Beers b
WHERE EXISTS (

SELECT name FROM Beers
WHERE manf = b.manf AND

name <> b.name);

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b.

You should be able to think of a few other ways to write this same query.

What happens when we run that query
on this relation?

Beer Manf

Bud Anheuser-
Busch

Bud Lite Anheuser-
Busch

Subquery is nonempty,

because of the Bud Lite

tuple.

Is subquery empty now?

Do we delete this?

Tuples are marked for deletion,
then deleted.

Beer Manf

Bud Anheuser-
Busch

Bud Lite Anheuser-
Busch

Subquery is nonempty.

Subquery is nonempty.

You can change the values of
selected tuples.

UPDATE relation
SET attribute assignments
WHERE condition;

Change drinker Fred’s phone
number to 555-1212.

UPDATE Drinkers
SET phone = ‘555-1212’
WHERE name = ‘Fred’;

You can update several tuples at
once.

Employees (EmpName, Department,
HourlySalary)

Raise the minimum wage to $10/hour.
UPDATE Employees
SET HourlySalary = 10.00
WHERE hourlySalary < 10.00;

Let’s give everyone a 10% raise.

Employees (EmpName, Department,
HourlySalary)

UPDATE Employees
SET HourlySalary = 1.1 * hourlySalary;

Setting Up and Changing
the Database Schema:

How to declare relations,
keys, and a few other
things

It’s very easy to create and
drop relations

CREATE TABLE relationName (
attributeName1 type1,
…
attributeNameK typeK);

DROP TABLE relationName;

INT or INTEGER
REAL or FLOAT
DATE ‘yyyy-mm-dd’
TIME ‘hh:mm:ss’
CHAR(n) = fixed-length
string of n characters.
VARCHAR(n) =
variable-length string of
up to n characters.

CREATE TABLE Sells (
bar CHAR(20),
beer VARCHAR(20),
price REAL

);

DROP TABLE Sells;

You can declare your keys, using
PRIMARY KEY or UNIQUE

Then the DBMS will enforce that if two tuples
agree on the attribute(s) in the key, then they
must agree on all of their attributes.

CREATE TABLE Beers (
name CHAR(20) PRIMARY KEY,
manf CHAR(20)

);

Sometimes a key has more than one
attribute, and then we use a different

syntax.
Sells (bar, beer, price)

CREATE TABLE Sells (
bar CHAR(20),
beer VARCHAR(20),
price REAL,
PRIMARY KEY (bar, beer)

);

The PRIMARY KEY is your favorite
key; other keys are just UNIQUE

netID versus studentNumber : which to pick as primary
key?

Some DBMSs may assume that you will usually look up
tuples by their primary key, and do special things
automatically to make lookups fast on those attributes.

Why label other keys as UNIQUE? The DBMS will
automatically generate an error if someone does an
update that violates the uniqueness constraint.

No NULLs are allowed in
PRIMARY KEYs.

UNIQUE attributes can have NULLs,
and there may be several tuples with NULLs for

their UNIQUE attributes.

SSN Name Department Project Salary

123456789 NULL NULL Optimizer 10000

234567891 NULL NULL Optimizer 20000

This Employee table instance is legal, even though the two
tuples (almost) agree on Name.

Primary key

Unique

You can prevent an attribute from
ever being NULL

CREATE TABLE Drinkers (
name CHAR(30) PRIMARY KEY,
addr CHAR(50) NOT NULL,
phone CHAR(16) DEFAULT ‘Unlisted’

);
Saves time

You can add and drop attributes
(but don’t do it too often)

ALTER TABLE relationName
ADD attributeName typeInfo;

ALTER TABLE relationName
DROP attributeName;

ALTER TABLE Bars ADD
phone CHAR(16) DEFAULT ‘unlisted’;
ALTER TABLE Bars DROP phone;

Views

Views are like the temporary relations we
declared and reused so often in relational

algebra to make things easier

CREATE VIEW viewName AS query;

Then use viewName in queries like a “real”
relation, even though its data isn’t
actually stored. It’s a virtual relation.

A relation whose instance is really stored in
the database is a base table.

I want a view that contains just my
CS411 students

Enrollments(netID, course,
semester, year, grade)

CREATE VIEW cs411students AS
SELECT netID, grade
FROM Enrollments
WHERE course = ‘CS411’ AND year = 2008

AND semester = ‘fall’;

The DBMS replaces the view name by its
definition at run time, essentially

1. Rewrite the query and the view definition in
relational algebra (almost).

2. In the query, replace the view name by its
definition.

PROJbeer

SELECTdrinker=‘Sally’

CanDrink

PROJdrinker, beer

JOIN

Frequents Sells

Expression trees

Sometimes it makes sense to modify
the tuples in a view.

Employee(ssn, name, department,
project, salary)

CREATE VIEW Developers AS
SELECT name, project, department
FROM Employee
WHERE department = ‘Development’;

CREATE VIEW Developers AS
SELECT name, project, department
FROM Employee
WHERE department = ‘Development’;

INSERT INTO Developers
VALUES(‘Joe’, ‘Optimizer’, ‘Development’);

INSERT INTO Developers
VALUES(‘Joe’, ‘Optimizer’, ‘Development’);

INSERT INTO Employee
VALUES(NULL, ‘Joe’, Development, ‘Optimizer’, NULL);

INSERT INTO Employee
VALUES(NULL, ‘Joe’, Development, ‘Optimizer’, NULL);Result:

Warning: as we will see later, such insertions are prohibited if the null fields are part of the
primary key.

Other times, the modifications make no
sense.

Employee(ssn, name, department, project, salary)

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = ‘Development’;

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = ‘Development’;

INSERT INTO Developers
VALUES(‘Joe’, ‘Optimizer’);

INSERT INTO Developers
VALUES(‘Joe’, ‘Optimizer’);

INSERT INTO Employee
VALUES(NULL, ‘Joe’, NULL, ‘Optimizer’, NULL);

INSERT INTO Employee
VALUES(NULL, ‘Joe’, NULL, ‘Optimizer’, NULL);Result:

Joe is NOT in the view, and your users are VERY confused!

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = ‘Development’;

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = ‘Development’;

Why isn’t Joe in the view?

Of course your users don’t understand this inexplicable behavior.
Fortunately, later on we’ll see ways to help hide these strange things
from them.

SSN Name Department Project Salary
NULL Joe NULL Optimizer NULL

Joe doesn’t satisfy

this WHERE

clause---it evaluates

to MAYBE.

Non-Updatable Views

CREATE VIEW Champaign-view AS

SELECT name, address, product, store
FROM Person, Purchase
WHERE Person.address = ‘Champaign’ AND

Person.name = Purchase.buyer

CREATE VIEW Champaign-view AS

SELECT name, address, product, store
FROM Person, Purchase
WHERE Person.address = ‘Champaign’ AND

Person.name = Purchase.buyer

How can we add the following tuple to the view?

(‘Joe’, ‘Champaign’, ‘Nike shoes’, ‘Nine West’)

We need to add “Joe” to Person first. One copy ? More copies ?

Person(name, address), Purchase(buyer, product, store)

Multiple relations

Non-Updatable Views
INSERT Champaign-view

VALUES (‘Joe’, ‘Champaign’, ‘Nike shoes’, ‘Nine West’)

Person

name address

Purchase

buyer product store

Joe Nike shoes Nine WestJoe Champaign

INSERT Champaign-view
VALUES (‘Joe’, ‘Champaign’, ‘U of I T-shirt’, ‘Nine West’)

Joe Champaign Joe U of I T-shirt WalMart

Similar troubles occur with
modifications to UNION views,

INTERSECTs, GROUP BYs, etc.

Often the application writer knows which interpretation makes
sense, but the DBMS doesn’t automatically know.

Best solution: let the application writer catch these modification
requests and rewrite them in a form that makes sense for the
application.

