
CS411
Database Systems

Kazuhiro Minami

06: SQL

SQL = Structured Query Language
Standard language for querying and manipulating

data
• Has similar capabilities for queries to those in

relational algebra
• Support statements for modifying a database (e.g.,

inserting and deleting tuples) and for declaring a
database schema

Many standards: SQL92, SQL2, SQL3, SQL99
• We cover features that conform with SQL99

What is special about SQL?
You describe what you want,
and the job of the DBMS is to figure out how to

compute what you want efficiently.
(at least in theory)

The basic form of a SQL query is
select-from-where

SELECT desired attributes
FROM one or more tables
WHERE condition on the rows of

the tables

Project out
everything not in
the final answer

Every table you
want to join,
together

All the join and
selection conditions

Single-Relation Queries

What beers are made by
Anheuser-Busch?

Beers(name, manf)
Name

Bud

Bud Lite

Michelob

SELECT name
FROM Beers
WHERE manf = ‘Anheuser-Busch’;

SELECT name
FROM Beers
WHERE manf = ‘Anheuser-Busch’;

In relational algebra: σ [manf = “Anheuser-Busch”] Beers

Name Manf
Bud Anheuser-Busch
Bud Lite Anheuser-Busch

Michelob Anheuser-Busch

Super Dry Asahi

These simple queries can be
translated to relational algebra

1. Begin with the
relation in the FROM
clause.

2. Apply the selection
indicated by the
WHERE clause.

3. Apply the projection
indicated by the
SELECT clause.

SELECT A1, …, An
FROM R

WHERE condition

R[condition][A1, …, An]

π[A1, …, An] σ[condition] R

Here is a way to think about how the
query might be implemented

1. Imagine a tuple variable
ranging over each tuple
of the relation
mentioned in FROM.

2. Check if the “current”
tuple satisfies the
WHERE clause.

3. If so, output the
attributes/expressions
of the SELECT clause
using the components
of this tuple.

A B C

A B

Put * in the SELECT clause if you
don’t want to project out any

attributes
Beers(name, manf)

Name Manf
Bud Anheuser-Busch
Bud Lite Anheuser-Busch

Michelob Anheuser-Busch

SELECT *
FROM Beers
WHERE manf = ‘Anheuser-Busch’;

SELECT *
FROM Beers
WHERE manf = ‘Anheuser-Busch’;

Find all US companies whose stock
is > $500

Company(sticker, name, country, stockPrice)

SELECT *
FROM Company
WHERE country=‘USA’ AND stockPrice > 500

SELECT *
FROM Company
WHERE country=‘USA’ AND stockPrice > 500

Sticker Name Country StockPrice

GOOG Google USA 550
GOOG Apple USA 485

You can rename the attributes in
the result, using “as <new name>”
Beers(name, manf)

SELECT name AS beer, manf
FROM Beers
WHERE manf = ‘Anheuser-Busch’;

SELECT name AS beer, manf
FROM Beers
WHERE manf = ‘Anheuser-Busch’;

Beer Manf
Bud Anheuser-Busch
Bud Lite Anheuser-Busch

Michelob Anheuser-Busch

You can use math in the
SELECT clause

Sells(bar, beer, price)

SELECT bar, bEeR, price*120 AS priceInYen
FROM Sells;
SELECT bar, bEeR, price*120 AS priceInYen
FROM Sells;

Bar Beer PriceInYen
Joe’s Bud 300
Sue’s Asahi 360
… … …

Case-insensitive, except inside

quoted strings

You can create a new column and
give it a constant value, in the

SELECT clause

Drinker WhoLikesBud
Sally Likes Bud
Fred Likes Bud

SELECT drinker,
‘Likes Bud’ AS WhoLikesBud

FROM Likes
WHERE beer = ‘Bud’;

SELECT drinker,
‘Likes Bud’ AS WhoLikesBud

FROM Likes
WHERE beer = ‘Bud’;

Likes(Drinker, beer)

Drinker Beer
Sally Bud
Fred Bud

Find the price Joe’s Bar
charges for Bud.

Sells(bar, beer, price)

SELECT price
FROM Sells
WHERE bar = ‘Joe’’s Bar’ AND beer = ‘Bud’;

SELECT price
FROM Sells
WHERE bar = ‘Joe’’s Bar’ AND beer = ‘Bud’;

Two single quotes inside
a string = one apostrophe

What you can use in the
WHERE clause conditions:

constants of any supported type
attribute names of the relation(s) used in the FROM
arithmetic operations: stockprice*2
operations on strings (e.g., “||” for concatenation)

comparison operators: =, <>, <, >, <=, >=
lexicographic order on strings (<)
string pattern matching: s LIKE p
special functions for comparing dates and times

and combinations of the above using AND, OR, NOT, and
parentheses

attr LIKE pattern does pattern
matching on strings

pattern is a quoted string that may contain two
special symbols:

phone LIKE ‘%555-_ _ _ _’
address LIKE “%Mountain%”

Symbol What It Matches
% matches any sequence of characters

_ matches any single character

Find the drinkers with phone
prefix 555

Drinkers(name, addr, phone)

SELECT name
FROM Drinkers
WHERE phone LIKE ‘%555-____’;

SELECT name
FROM Drinkers
WHERE phone LIKE ‘%555-____’;

Find all US companies whose
address contains “Mountain”

Company(sticker, name, address, country,
stockPrice)

SELECT *
FROM Company
WHERE country=“USA” AND

address LIKE ‘%Mountain%’;

SELECT *
FROM Company
WHERE country=“USA” AND

address LIKE ‘%Mountain%’;

What if an attribute value is unknown,
or the attribute is inapplicable (e.g., my

daughter’s spouse)?

SELECT bar
FROM Sells
WHERE price < 2.00 OR price >= 2.00;

SELECT bar
FROM Sells
WHERE price < 2.00 OR price >= 2.00;

Bar
Jillian’s

Why???

Bar Beer Price
Jillian’s Bud 2.00
White Horse Inn Asahi NULL

Conditions involving NULL evaluate
to unknown, rather than true or false
Example condition Evaluates to
‘Smith’ = ‘Smith’ true

2 > 6 false

‘Smith’ = NULL unknown

2 < NULL unknown

true AND unknown unknown

true OR unknown true

false AND unknown false

false OR unknown unknown

unknown OR unknown unknown

A tuple only
goes in the
answer if its
truth value

for the
WHERE
clause is

true.

The “law of the excluded
middle” doesn’t hold in this 3-

valued logic

SELECT bar
FROM Sells
WHERE price < 2.00 OR price >= 2.00;

SELECT bar
FROM Sells
WHERE price < 2.00 OR price >= 2.00;

unknown
unknown

Bar Beer Price
White Horse Inn Asahi NULL

unknown

SQL code writers spend a lot of
space dealing with NULL values

Can test for NULL explicitly:
x IS NULL
x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR
age IS NULL

The answer includes all Persons!

Exercise 1: online bookstore
Book(isbn, title, publisher, price)
Author(assn, aname, isbn)
Customer(cid, cname, state, city, zipcode)
Buy(tid, cid, isbn, year, month, day)

Q1: Make a list of the ISBNs and titles of books
whose price is greater than $1000?

SELECT isbn, title
FROM Book
WHERE price > 1000

Multi-Relation Queries

If you need to join several
relations, you can list them all in

the FROM clause

SELECT bar
FROM Sells, Likes
WHERE drinker = ‘Alice’ AND
Likes.beer = Sells.beer;

SELECT bar
FROM Sells, Likes
WHERE drinker = ‘Alice’ AND
Likes.beer = Sells.beer;

List the bars that serve a beer that Alice likes.
Likes(drinker, beer) Sells(bar, beer, price)

This is how we

disambiguate

attribute names.

π[bar](Sells ⋈ σ [drinker =“Alice”] Likes)

Find the beers liked by at least one
person who frequents Murphy’s Pub

SELECT beer AS beersWorthKeeping
FROM Likes, Frequents
WHERE bar = ‘Murphy’’s Pub’ AND

Frequents.drinker = Likes.drinker;

SELECT beer AS beersWorthKeeping
FROM Likes, Frequents
WHERE bar = ‘Murphy’’s Pub’ AND

Frequents.drinker = Likes.drinker;

BeersWorthKeeping
Samuel Adams Pale Ale
…

Likes(drinker, beer) Frequents(drinker, bar)

π[beer] (Likes ⋈ σ [bar = “Murphy’s Pub”] Frequents)

Find names of people living in Champaign who
bought snow shovels, and the names of the

stores where they bought them

Purchase (buyer, seller, store, product)
Person(pname, phoneNumber, city)

SELECT pname, store
FROM Person, Purchase
WHERE pname = buyer AND city = ‘Champaign’

AND product = ‘snow shovel’;

SELECT pname, store
FROM Person, Purchase
WHERE pname = buyer AND city = ‘Champaign’

AND product = ‘snow shovel’;

π[pname, store](σ [city = “Champaign”] Person ⋈ Pname = buyer

σ [product=“snow shovel”] Purchase)

You can also join three or more relations,
just like in relational algebra

Product (name, price, category, maker)
Purchase (buyer, seller, store, product)
Person (name, phoneNumber, city)

Find names and phone numbers of people buying telephony products.

SELECT Person.name, Person.phoneNumber
FROM Person, Purchase, Product
WHERE Person.name=Purchase.buyer

AND Purchase.product=Product.name
AND Product.category=“telephony”

SELECT Person.name, Person.phoneNumber
FROM Person, Purchase, Product
WHERE Person.name=Purchase.buyer

AND Purchase.product=Product.name
AND Product.category=“telephony”

What should be in the answer
when the query involves a join?

1. Create the cartesian product of all the relations
in the FROM clause.

2. Then remove all the tuples that don’t satisfy the
selection condition in the WHERE clause.

3. Project the remaining tuples onto the list of
attributes/expressions in the SELECT clause.

An algorithm for computing the answer
1. Imagine one tuple

variable for each
relation mentioned in
FROM. These tuple-
variables visit each
combination of tuples, one
from each relation.

2. Whenever the tuple-
variables are pointing to
tuples that satisfy the
WHERE clause, send
these tuples to the
SELECT clause.

A B C

A B E

D E

Exercise 2: online bookstore
Book(isbn, title, publisher, price)
Author(assn, aname, isbn)
Customer(cid, cname, state, city, zipcode)
Buy(tid, cid, isbn, year, month, day)

Q2: Make a list of the CIDs and customer names
who bought books written by ‘Barack Obama’?

SELECT Customer.cid, Customer.cname
FROM Author, Buy, Customer
WHERE Customer.cid = Buy.cid AND Buy.isbn = Author.ibn

AND Author.name = `Barack Obama’ ;

