

How do we query (specify what info we want from) the database?

Find all the employees who earn more than \$50,000 and pay taxes in Champaign-Urbana.

- Could write in C++/Java, but who would want to?
- Instead use high-level query languages:
- Theoretical: Relational algebra - Practical: SQL

Relational algebra has 5 operations
Input $=$ relation(s), output $=$ relations
-Set union: \cup
-Set difference: -
-Selection: σ
-Projection: π
-Cartesian product: \times
Can add some syntactic sugar and/or define new operators in terms of these

Union takes the set union of two relations				
Oldiagnosis		NewDiagnosis		
	Meingits			$\xrightarrow{\substack{\text { Hataves } \\ \text { Mering }}}$
	Ebola		Chang	Cholea
OldDiagnosis \cup NewDiagnosis				
$\begin{array}{\|l} \text { Reminder: } \\ \text { sets have no } \\ \text { duplicates } \end{array}$				Input and output
	7 zmi	stre		relations need to
	Han	Emola		have the same
	Wissent	Hemaxims		schema
	Chang	Cholea		

Difference takes the set difference of two relations			
OldDiagnosis		NewDiagnosis	
Patient	Disease	Patient	Disease
Winslett	Strep	Winslett	Hantavirus
	Meningitis	Zhai	Meningitis
Han	Ebola	Chang	Cholera
WrongDiagnosis := OldDiagnosis - NewDiagnosis			
	Patient	Disease	
	Winslett	Strep	
	Han	Ebola	

Selection keeps only the tuples that satisfy a particular condition Diagnosis			
Patient	Disease	Temperature	Find all patients who have a fever
Winslett	Strep	98.9	
Zhai	Meningitis	101.1	
Han	Ebola	96.6	$\sigma_{\text {Temperaure }>98.6}($ Diagnosis)
Winslett	Hantavirus	98.6	
Chang	Cholera	102.3	
Better for everyone's sake if we write this as $\sigma[$ Temperature > 98.6] (Diagnosis) You can write it any of these two ways in this class.			

Selection Example			
Employee			
SSN	Name	DepartmentID	Salary
999999999	John	1	30,000
777777777	Tony	1	32,000
888888888	Alice	2	45,000
Find all employees with salary more than $\$ 40,000$			
$\sigma_{\text {salay }>\text { soooo }}($ Employee $)$			
SSN	Name	DepartmentID	Salary
888888888	Alice	2	45,000

Projection eliminates all but the listed			
columns, and puts them in the listed order			
Diagnosis			
Patient	Disease	Temperature	
Winslett	Strep	98.9	List all the patients and their diagnoses
Zhai	Meningitis	101.1	
Han	Ebola	96.6	
Winslett	Hantavirus	98.6	
π Disease, Patie	(Diagnos		
Disease	Patient	For convenience, we may wri π [Disease, Patient] (Diagnosis)	
Strep	Winslett		
Meningitis	Zhai		
Ebola	Han		
Hantavirus	Winslett		

The columns you project onto have to actually exist
π [Salary, Town] Diagnosis
π [Disease] Employee
Formally, $\pi_{A 1, \ldots, A n}(R)$ is a legal relational algebra expression if each of $A 1, \ldots, A n$ is an attribute of R

Projection Example			
Employee			
SSN	Name	DepartmentID	Salary
999999999	John	1	30,000
777777777	Tony	1	32,000
888888888	Alice	2	45,000
$\Pi_{\text {SSN, Name }}$ (Employee)			
SSN	Name		
999999999	John		
777777777	Tony		
888888888	Alice		

The cartesian product of two relations is usually enormous			
Diagnosis		RareDiseases	
Patient	Disease		
Winslett	Strep	Disease	Take each
Zhai	Meningitis	Ebola	possible
Han	Ebola	Hantavirus	combination of
Diagno	\times RareDise		one tuple from the first relation
Patient	Diagnosis.Disease	RareDiseases.Disease	and one tuple
Winslett	Strep	Ebola	from the second
Zhai	Meningitis	Ebola	relation
Han	Ebola	Ebola	
Winslett	Strep	Hantavirus	(may need to
Zhai	Meningitis	Hantavirus	rename some
Han	Ebola	Hantavirus	attributes)

Cartesian Product Example			
Employee			
Name		SSN	
John		999999999	
Tony		777777777	
Dependents			
EmployeeSSN		Dname	
999999999		Emily	
777777777		Joe	
Employee x Dependents			
Name	SSN	EmployeeSSN	Dname
John	999999999	999999999	Emily
John	999999999	777777777	Joe
Tony	777777777	999999999	Emily
Tony	777777777	777777777	Joe

Relational algebra = every expression you can make using these 5 operators (plus renaming)
Any relation name is a relational algebra expression.

If R and S are relational algebra expressions, then so are $\boldsymbol{R}-\boldsymbol{S}, \boldsymbol{R} \cup \boldsymbol{S}$ and $\boldsymbol{R} \times \mathbf{S}$.
If \boldsymbol{R} is a relational algebra expression and θ is a selection condition, then $\sigma[\theta] R$ is a relational algebra expression.
If R is a relational algebra expression and L is a list of attributes of \boldsymbol{R}, then $\pi[L] \boldsymbol{R}$ is a relational algebra expression.

Nothing else is a relational algebra expression.

Derived RA Operations

Intersection, join

Intersection can be defined in terms of difference			
OldDiagnosis		NewDiagnosis	
Patient	Disease	Patient	Disease
Winslett	Strep	Winslett	Hantavirus
Zhai	Meningitis	Zhai	Meningitis
Han	Ebola	Chang	Cholera
$\begin{aligned} \text { RightDiagnosis } & =\text { OldDiagnosis } \cap \text { NewDiagnosis } \\ & =\text { OldDiagnosis }-(\text { OldDiagnosis }- \text { NewDiagnosis }) \end{aligned}$ More generally, $R \cap S=R-(R-(S))$.			
Patient Disease Zhai Meningitis			

A join is a cartesian product followed immediately by a selection

OldDiagnosis			NewDiagnosis	
Patient	Disease		Patient	Disense
Winslett	Strep		Winslett	Hantavirus
Zhai	Meningitis		Zhai	Meningitis
Han	Ebola		Chang	Cholera

Who has an old diagnosis that is different from one of their new diagnoses?
$\pi[\# 1 \underset{\text { Winslett }}{\sigma[\# 1=\# 3 \text { and } \# 2 \neq \# 4] \text { (OldDiagnosis } \times \text { NewDiagnosis) }}$ A join

How does that work?				
OldDiagnosis			NewDiagnosis	
Patient	Disease		Patient	Disease
Winslett	Strep		Winslett	Hantavirus
Zhai	Meningitis		Zhai	Meningitis
Han	Ebola		Chang	Cholera
Temp(Pat1, D	1, Pat2, Di	OldDiag	\times New	nosis
Patt	Dist	Pat2	Dis2	
Winslett	Strep	Winslett	Hantavi	
Zhai	Meningitis	Winslett	Hantavi	
Han	Ebola	Winslett	Hantavi	
Winslett	Strep	Zhai	Mening	
Zhai	Meningitis	Zhai	Mening	
Han	Ebola	Zhai	Mening	
Winslett	Strep	Chang	Cholera	
Zhai	Meningitis	Chang	Cholera	
Han	Ebola	Chang	Cholera	

BothDiagnoses = $\sigma[$ Pat1 $=$ Pat2 and Dis1 $=$ Dis2] (Temp)			
Temp			
Pati	Dist	Pat2	Dis2
Winslett	Strep	Winslett	Hantavirus
Zhai	Meningitis	Winslett	Hantavirus
Han	Ebola	Winslett	Hantavirus
Winslett	Strep	Zhai	Meningitis
7 hri	Maningitic	7 hai	Moningitic
Han	Ebola	Zhai	Meningitis
Winslett	Strep	Chang	Cholera
Zhai	Meningitis	Chang	Cholera
Han	Ebola	Chang	Cholera

FinalAnswer = π [Pat1] BothDiagnoses

BothDiagnoses

Pati	Dis1	Par2	Dis2
Winslett	Strep	Winslett	Hantavirus

FinalAnswer
Winslett

There is a convenient shorthand for joins

This is called a θ-join, or an equijoin when θ is $=$.

Natural joins join on attributes with the same name

Employees		Managers		
Emp	Dept	Dept	Mgr	
Winslett	Complaint	Complaint	Mendez	
Zhai	Toy	Toy	Smith	
Han	Toy	Returns	Chu	

Employees ${ }^{\bowtie}$ Managers

Emp	Dept	Mgr
Winslett	Complaint	Mendez
Zhai	Toy	Smith
Han	Toy	Smith

Your first real query: who makes more than their manager?	
E(emp, dept, sal)	M (mgr, dept)
ESM(emp, sal, mgr)	mp, sal, mgr] (E® M)
π [ESM.emp](ESM \ltimes [m	mp AND ESM.sal > E.sal] E)
Why???	

You can define relational algebra on bags instead of sets (closer match to SQL)

- Union: $\{a, b, b, c\} \cup\{a, b, b, b, e, f, f\}=\{a, a, b, b, b, b, b, c, e, f, f\}$ - add the number of occurrences
- Difference: $\{a, b, b, b, c, c\}-\{b, c, c, c, d\}=\{a, b, b\}$ - subtract the number of occurrences
- Intersection: $\{a, b, b, b, c, c\} \quad\{b, b, c, c, c, c, d\}=\{b, b, c, c\}$ - minimum of the two numbers of occurrences
- Selection: preserve the number of occurrences
- Projection: preserve the number of occurrences (no duplicate elimination)
- Cartesian product, join: no duplicate elimination

[^0]
Summary of relational algebra

Basic primitives:
$\sigma[C](E)$
$\left.\pi A_{1}, \ldots, A_{n}\right](E)$
$E 1 \times E 2$,
$E 1 \cup E 2$
$E 1-E 2$
$\rho\left[S\left(A_{1}, \ldots, A_{n}\right)\right]$ (E)
Abbreviations:
E1』E2
E1 ${ }_{c}{ }_{c}$ E2
$\mathrm{E} 1 \cap \mathrm{E} 2$

[^0]: More detail in the book (Chapter 5.1)

