CS411 Database Systems

04: Relational Schema Design
Kazuhiro Minami

Primary Goal: Minimize Redundancy

- Basic approach: decompose an original schema into sub-schemas
$-R\left(A_{1}, \ldots, A_{n}\right)=>S\left(B_{1}, \ldots, B_{m}\right)$ and $T\left(C_{1}, \ldots, C_{k}\right)$ such that $\left\{A_{1}, \ldots, A_{n}\right\}=\left\{B_{1}, \ldots, B_{m}\right\} \cup\left\{C_{1}, \ldots, C_{k}\right\}$
- Challenges:
- Avoid information loss
- Easy to check functional dependencies (FDs)
- Ensure good query performance

Normal Forms

Define the condition that guarantees the desired properties of a relation schema

- Boyce Codd Normal Form (BCNF)
- Third Normal Form (3NF)
- Fourth Normal Form (4NF)

Others...

Boyce-Codd Normal Form

A relation R is in $B C N F$ if whenever there is a nontrivial FD $A_{1} \ldots A_{n} \rightarrow B$ for R, $\left\{A_{1} \ldots A_{n}\right\}$ is a superkey for R.

An FD is trivial if all the attributes on its right-hand side are also on its left-hand side.

SSN	Name	Phone Number
$123-32-1099$	Fred	$(201) 555-1234$ $123-32-1099$ Fred (206) $572-4312$ $909-43-4444$
Joe	$(908) 464-0028$	
$909-43-4444$	Joe	$(212) 555-4000$
$234-56-7890$	Jocelyn	$(212) 555-4000$

FD: SSN \rightarrow Name

What are the keys?
The only key is \{SSN, Phone Number\}. How do I know? Augmentation + minimality.
Is it in BCNF?
No. SSN is not a key.

What about that alternative schema we recommended earlier---are they in BCNF?

What about that alternative schema we recommended earlier---are they in BCNF?

SSN	Name
$123-32-1099$	Fred
$909-43-4444$	Joe

SSN	Phone Number
$123-32-1099$	$(201) 555-1234$
$123-32-1099$	$(206) 572-4312$
$909-43-4444$	$(908) 464-0028$
$909-43-4444$	$(212) 555-4000$

True or False:
Any 2-attribute relation is in BCNF.

Name \rightarrow Price, Category What are the keys for this one? Is it in BCNF?

Name	Price	Category
Gizmo	$\$ 19.99$	gadgets
OneClick	$\$ 24.99$	toys

A relation R is in BCNF if whenever there is a nontrivial FD A1 ... An $\rightarrow B$ for R, $\{A 1 \ldots A n\}$ is a superkey for R.

Name \rightarrow Price, Category What are the keys for this one? Is it in BCNF?

Name	Price	Category
Gizmo	$\$ 19.99$	gadgets
OneClick	$\$ 24.99$	toys

Answers: Key = $\{$ Name $\}$, it’s in BCNF, true.

Just breaking a relation schema into two-attribute subsets could cause information loss

Q: Is this a good idea?

$$
\mathrm{R}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)=>\mathrm{R}_{1}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right), \ldots, \mathrm{R}_{\mathrm{n} / 2}\left(\mathrm{~A}_{\mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}}\right)
$$

If relation R is not in BCNF, you can pull out the violating part(s) until it is.

1. Find a dependency that violates BCNF:
$\boldsymbol{A} \rightarrow \mathbf{B}$

2. Break R into R1 and R2 as follows.

3. Repeat until all relations are in

 BCNF.

won't give as good query performance as
NetID \quad Name \quad Address \quad Height \quad EyeColor \quad HairColor

Can you turn this one into BCNF?

PERSON

NetID	Name	Birthdate	EyeColor	Parent	CanVote

Functional dependencies:

NetID \rightarrow Name, Birthdate, EyeColor, CanVote

V(TING

One more split needed to
 PERSON reach BCNF

NetID	Name	Birthdate	EyeColor	Parent	CanVote

Functional dependencies:
NetID \rightarrow Name, Birthdate, EyeColor, CanVote Birthdate \rightarrow CanVote

HERSONINTO2			
NetID	Name	Birthdate	EyeColor

\section*{PARENTINTO
 | NetID | Parent |
| :--- | :--- |}

V(TING

Birthdate CanVote

An Official BCNF Decomposition

Algorithm Compute the clasures of every subset of attributes in R
Input: relation R, set S of FDs over R.
Output: a set of relations in BCNF.

1. Compute keys for R (from from S).
2. Use S^{+}and keys to check if R is in H Heuristics to reduce the amount of work
a. Pick a violation FD A \rightarrow.
b. Expand B as much as possible, by computing A^{+}.
c. Create R1 $=A^{+}$, and R2 $=A \cup\left(R-A^{+}\right)$.
d. Find the FDs over R1, using S^{+}. Repeat for R2.
e. Recurse on R1 \& its set of FDs. Repeat for R2.
3. Else R is already in BCNF; add R to the output.

Any good schema decomposition should be lossless.

Lossless iff a trip around the outer circle gives you back exactly the original instance of R.

Natural Join is the only way to restore the original relation

- $\mathrm{R}=$

A	B
X	Y
X	Z
Y	Z
Z	V

$S=$| B | C |
| :---: | :---: |
| z | U |
| V | W |
| z | V |

- $R \bowtie S=$

A	B	C
X	Z	U
X	Z	V
Y	Z	U
Y	Z	V
Z	V	W

BCNF decompositinns are

Why don't we get garbage?

Why don't we get garbage?

BCNF doesn't always have a dependency-preserving decomposition.

A schema doesn't preserve dependencies if you have to do a join to check an FD

A schema does preserve dependencies if you can check each FD with decomposed relations

A	B

$\mathrm{A} \rightarrow \mathrm{B}$
$B \rightarrow C$

What about A \rightarrow C? Do we have to do a join to check it?

B	C

No.

So this BCNF decomposition does preserve dependencies.

Normal Forms

First Normal Form = all attributes are atomic
Second Normal Form (2NF) = old and obsolete

Boyce Codd Normal Form (BCNF)
Third Normal Form (3NF)
Fourth Normal Form (4NF)

Others...

If a BCNF decomposition doesn't preserve dependencies, use 3rd Normal Form instead.

R is in 3NF
if for every nontrivial FD $A_{1}, \ldots, A_{n} \rightarrow B$, either $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey, or B is part of a key.

Weakens
BCNF.

Synthesis Algorithm for 3NF Schemas

I. Find a minimal basis G of the set of FDs for relation R
2. For each $F D X \rightarrow A$ in G, add a relation with attributes $X A$
3. If none of the relation schemas from Step 2 is a superkey for R, add a relation whose schema is a key for R

Result will be lossless and will preserve dependencies. Result will be in 3NF, but might not be in BCNF.

Minimal Basis

A set of FD's F is a minimal basis of a set of dependencies E if

1. $E=F^{+}$
2. Every dependen its right-hand sic

We only need to check whether FD's in a minimal
3. Cannot remove remove attribute F (minimality)
Example:

$$
\begin{aligned}
& E=\{A \rightarrow B, A \rightarrow C \quad D \rightarrow A, B \rightarrow C, C \rightarrow A, C \rightarrow B\} \\
& F=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}
\end{aligned}
$$

Normal Forms

First Normal Form = all attributes are atomic
Second Normal Form (2NF) = old and obsolete

Boyce Codd Normal Form (BCNF)
Third Normal Form (3NF)
Fourth Normal Form (4NF)

Others...

Multivalued dependencies capture this kind of redundancy.

$$
\begin{aligned}
& \text { NetID } \rightarrow \text { Phone Number } \\
& \text { NetID } \Rightarrow \text { Course }
\end{aligned}
$$

Definition of Multi-valued Dependency

A1 ... An $\Rightarrow B 1$... Bm holds iff

You can tear apart a relation R with an MVD.

If A1 ... An \rightarrow B1 ... Bm holds in R, then the decomposition R1(A1, ..., An, B1,..., Bm) R2(A1, ... An, C1 ,..., Ck) is lossless.

A11	\ldots	An	B1	\ldots	Bm
a1	\ldots	an	b11	\ldots	bm1
a1	\ldots	an	b12	\ldots	bm2

A1	\ldots	An	C1	\ldots	Ck
a1	\ldots	an	c11	\ldots	ck1
a1	\ldots	an	c12	\ldots	ck2

Note: an MVD A1 ... An \rightarrow B1 ... Bm implicitly talks about "the other" attributes $\mathrm{C} 1, \ldots, \mathrm{Ck}$.

The inference rules for MVDs are not the same as the ones for FDs.

 The most basic one:If $\mathrm{A} 1 \ldots \mathrm{An} \rightarrow \mathrm{B} 1 \ldots \mathrm{Bm}$,
then $A 1 \ldots A n \Rightarrow B 1 \ldots B m$.

Other rules in the book.

$4^{\text {th }}$ Normal Form (4NF)

R is in 4NF if for every nontrivial MVD
$A 1, \ldots, A n \rightarrow B 1, \ldots, B m$, $\{A 1, \ldots, A n\}$ is a superkey.

Same as BCNF with FDs replaced by MVDs.

MVD Summary: Parent \Rightarrow Child

- $X \rightarrow Y$ means that given X, there is a unique set of possible Y values (which do not depend on other attributes of the relation)
- MVD problems arise if there are two independent 1:N relationships in a relation.
- An FD is also a MVD.

There's lots more MVD theory, but we won't go there.

Confused by Normal Forms ?

Normal forms tell you when your schema has certain forms of redundancy,
but there is no substitute for commonsense understanding of your application.

