
CS411
Database Systems

Kazuhiro Minami

04: Relational Schema Design

Primary Goal: Minimize Redundancy

• Basic approach: decompose an original
schema into sub-schemas
– R(A1,…,An) => S(B1,…,Bm) and T(C1,…,Ck) such

that {A1,…,An} = {B1,…,Bm} U {C1,…,Ck}
• Challenges:

– Avoid information loss
– Easy to check functional dependencies (FDs)
– Ensure good query performance

Normal Forms

Define the condition that guarantees the
desired properties of a relation schema

• Boyce Codd Normal Form (BCNF)
• Third Normal Form (3NF)
• Fourth Normal Form (4NF)

Others...

Boyce-Codd Normal Form

A relation R is in BCNF if whenever there is a
nontrivial FD A1 ... An → B for R,

{A1 ... An} is a superkey for R.

An FD is trivial if all the
attributes on its right-hand side
are also on its left-hand side.

What are the keys?
The only key is {SSN, Phone Number}.
How do I know? Augmentation + minimality.

Is it in BCNF?
No. SSN is not a key.

SSN Name Phone Number

123-32-1099 Fred (201) 555-1234

123-32-1099 Fred (206) 572-4312

909-43-4444 Joe (908) 464-0028

909-43-4444 Joe (212) 555-4000

234-56-7890 Jocelyn (212) 555-4000

FD: SSN → Name

What about that alternative schema we
recommended earlier---are they in BCNF?

SSN Phone Number
123-32-1099 (201) 555-1234

123-32-1099 (206) 572-4312

909-43-4444 (908) 464-0028

909-43-4444 (212) 555-4000

If Phone Number → SSN holds
Important FDS:
Phone Number → SSN.

Keys: {Phone Number}
Is it in BCNF? Yes.

If Phone Number → SSN doesn’t hold
Important FDS: none.
Keys: {SSN, Phone Number}
Is it in BCNF? Yes.

SSN Name

123-32-1099 Fred

909-43-4444 Joe

Important FDS: SSN → Name
Keys: {SSN}.
Is it in BCNF? Yes.

What about that alternative schema we
recommended earlier---are they in BCNF?

True or False:
Any 2-attribute relation is in BCNF.

SSN Name

123-32-1099 Fred

909-43-4444 Joe

SSN Phone Number
123-32-1099 (201) 555-1234

123-32-1099 (206) 572-4312

909-43-4444 (908) 464-0028

909-43-4444 (212) 555-4000

Name → Price, Category
What are the keys for this one?

Is it in BCNF?

Name Price Category
Gizmo $19.99 gadgets
OneClick $24.99 toys

Name → Price, Category
What are the keys for this one?

Is it in BCNF?
Name Price Category
Gizmo $19.99 gadgets
OneClick $24.99 toys

Answers: Key = {Name}, it’s in BCNF, true.

Just breaking a relation schema
into two-attribute subsets could

cause information loss

R(A1,…,An) => R1(A1,A2), …, Rn/2(An-1,An)

Q: Is this a good idea?

If relation R is not in BCNF, you can
pull out the violating part(s) until it is.

1. Find a dependency that violates BCNF:
A → B

R’s
Other Attributes

B
= {B1, …, Bm}

A
= {A1, ..., An }

R

2. Break R into R1 and R2 as follows.

R’s
Other Attributes

BA

R

R’s Other Attributes
R1

A

R2

A

B

becomes

Heuristic to speed things
up and reduce the final
number of relations:
Make B as
large as
possible!

3. Repeat until all relations are in
BCNF.

NetID Name Address Height EyeColor HairColor

NetID Name

NetID Address

NetID Height

NetID EyeColor

NetID HairColor

won’t give as good query
performance as

Can you turn this one into BCNF?

Functional dependencies:
NetID → Name, Birthdate, EyeColor, CanVote
Birthdate → CanVote

Person
NetID Name Birthdate EyeColor Parent CanVote

NetID Name Birthdate EyeColor Parent

Personinfo

Voting
Birthdate CanVoteBut this FD is still violated, so we are

not in BCNF yet

The key is {NetID, Parent}
so this FD violates BCNF

One more split needed to
reach BCNF

Functional dependencies:
NetID → Name, Birthdate, EyeColor, CanVote
Birthdate → CanVote

Person
NetID Name Birthdate EyeColor Parent CanVote

NetID Name Birthdate EyeColor

NetID Parent

Personinfo2

Parentinfo
Voting
Birthdate CanVote

We split the old PersonInfo into two
relations. Now everything is in
BCNF.

An Official BCNF Decomposition
Algorithm

Input: relation R, set S of FDs over R.
Output: a set of relations in BCNF.
1. Compute keys for R (from from S).

2. Use S+ and keys to check if R is in BCNF. If not:
a. Pick a violation FD A → B.
b. Expand B as much as possible, by computing A+.
c. Create R1 = A+, and R2 = A ∪ (R − A+).
d. Find the FDs over R1, using S+. Repeat for R2.
e. Recurse on R1 & its set of FDs. Repeat for R2.

3. Else R is already in BCNF; add R to the output.

Compute the closures
of every subset of
attributes in R

Heuristics to reduce
the amount of work

Any good schema decomposition should
be lossless.

17

R

R1

Rn

Natural
join

…

Project
the
instance

Lossless iff a trip around the outer circle gives you back
exactly the original instance of R.

decompose

• R= S=

• R S =

Natural Join is the only way to
restore the original relation

A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

BCNF decompositions are
always lossless.

R(A, B, C)

R1(A, B)

R2(A, C)

Natural
join

Project
the
instance

decompose

A → C

Why don’t we get garbage?

20

R(A, B, C)

R1(A, B)

R2(A, C)

Natural
join

Project
the
instance

decompose

A → C

Why don’t we get garbage?

R(A, B, C)

R1(A, B)

R2(A, C)

Natural
join

Project
the
instance

decompose

A → C

But this violates A → C!

BCNF doesn’t always have a
dependency-preserving

decomposition.

A schema doesn’t preserve dependencies if you
have to do a join to check an FD

Account → Office No nontrivial FDs

Account Client Office
111 Papa John’s Champaign
334 Papa John’s Madison
121 Papa Del’s Champaign
242 Garcia’s Champaign

Client, Office → Account
Account → Office
Key is {Client, Office}

violates
BCNF

Account Office
111 Champaign
334 Madison
121 Champaign
242 Champaign

Account Client
111 Papa John’s
334 Papa John’s
121 Papa Del’s
242 Garcia’s

decompose into BCNF

Can’t check this
FD now without
doing a join

A schema does preserve dependencies if you
can check each FD with decomposed relations

A → B

A→ B
B→ C
Key = {A}

A B B C

A B C

B → C

violates
BCNF

decompose into BCNF
What about A→ C? Do we
have to do a join to check it?

No.
So this BCNF
decomposition does
preserve dependencies.

Normal Forms
First Normal Form = all attributes are

atomic
Second Normal Form (2NF) = old and

obsolete

Boyce Codd Normal Form (BCNF)
Third Normal Form (3NF)
Fourth Normal Form (4NF)

Others...

If a BCNF decomposition doesn’t
preserve dependencies, use 3rd

Normal Form instead.
R is in 3NF
if for every nontrivial FD A1, ..., An → B,
either {A1, ..., An} is a superkey,
or B is part of a key.

R is in 3NF
if for every nontrivial FD A1, ..., An → B,
either {A1, ..., An} is a superkey,
or B is part of a key.

Weakens
BCNF.

Synthesis Algorithm for 3NF
Schemas

1. Find a minimal basis G of the set of FDs for relation R
2. For each FD X→A in G, add a relation with attributes XA
3. If none of the relation schemas from Step 2 is a superkey for

R, add a relation whose schema is a key for R

Result will be lossless and will preserve dependencies.
Result will be in 3NF, but might not be in BCNF.

Minimal Basis
A set of FD’s F is a minimal basis of a set
of dependencies E if

1. E = F+

2. Every dependency in F has a single attribute for
its right-hand side

3. Cannot remove any dependency from F or
remove attributes from the left side of any FD in
F (minimality)

Example:
E = {A→B, A→C, B→A, B→C, C→A, C→B}
F = {A→B, B→C, C→A}

We only need to check
whether FD’s in a minimal

basis is preserved
in decomposed relations

Normal Forms
First Normal Form = all attributes are

atomic
Second Normal Form (2NF) = old and

obsolete

Boyce Codd Normal Form (BCNF)
Third Normal Form (3NF)
Fourth Normal Form (4NF)

Others...

BCNF doesn’t catch every kind of
redundancy (much less every bad

schema)

Multivalued dependencies capture this kind of redundancy.

NetID ↠ Phone Number
NetID ↠ Course

NetID Phone Course
winslett 333-3333 CS 511
winslett 123-4567 CS 411
winslett 333-3333 CS 411
winslett 123-4567 CS 511

Every combination of
phone numbers and my

courses

Professors

Phones

Courses

Definition of Multi-valued Dependency

31

A1 … An B1 … Bm C1 … Ck
a1 … an b11 … bm1 c11 … ck1
a1 … an b12 … bm2 c12 … ck2
a1 … an b11 … bm1 c12 … ck2

A1 … An ↠ B1 … Bm holds iff

there must
be a tuple
that agrees
with them
on the A’s,

Whenever
two tuples
agree on
the A’s,

agrees
with one
of them
on the

B’s,

and agrees
with the

other one
of them on

the C’s.

t
u

v

You can tear apart a relation R
with an MVD.

If A1 … An ↠ B1 … Bm holds in R,
then the decomposition

R1(A1, …, An, B1,…, Bm)
R2(A1, …, An, C1 ,…, Ck)

is lossless.

Note: an MVD A1 … An ↠ B1 … Bm
implicitly talks about “the other” attributes C1, …, Ck.

A1 … An B1 … Bm
a1 … an b11 … bm1
a1 … an b12 … bm2

A1 … An C1 … Ck
a1 … an c11 … ck1
a1 … an c12 … ck2

The inference rules for MVDs are
not the same as the ones for FDs.
The most basic one:

If A1 … An → B1 … Bm,
then A1 … An ↠ B1 … Bm.

Other rules in the book.

4th Normal Form (4NF)

R is in 4NF
if for every nontrivial MVD

A1,…,An ↠ B1,…, Bm,
{A1,…,An} is a superkey.

R is in 4NF
if for every nontrivial MVD

A1,…,An ↠ B1,…, Bm,
{A1,…,An} is a superkey.

Same as BCNF with FDs replaced by MVDs.

MVD Summary: Parent ↠ Child
• X ↠ Y means that given X, there is a unique set

of possible Y values (which do not depend on
other attributes of the relation)

• MVD problems arise if there are two
independent 1:N relationships in a relation.

• An FD is also a MVD.

There’s lots more MVD theory, but we won’t go
there.

Confused by Normal Forms ?
3NF

BCNF

4NF

Normal forms tell you when your schema has certain
forms of redundancy,

but there is no substitute for commonsense
understanding of your application.

