
CS411
Database Systems

Kazuhiro Minami

04: Relational Schema Design

ER model vs. Relational model

R E2E1

A2 A3
A6

A5A4

A1

Ted Codd
E1(A1, A2, A3) R(A1, A4, A5) E2(A5, A6)

A1 A2 A3 A1 A4 A5 A5 A6

•Entity Sets
•Relationships
•Attributes

Peter Chen

•Relations

ER model vs. Relational model

R E2E1

A2 A3
A6

A5A4

A1

Ted Codd
E1(A1, A2, A3, A4, A5) E2(A5, A6)

A5 A6

•Entity Sets
•Relationships
•Attributes

Peter Chen

•Relations
A1 A2 A3 A4 A5

determine
Reminder: redundancy causes trouble

update anomaly = update one copy of Fred’s SSN but not
the other

deletion anomaly = delete all Fred’s phones,
lose his SSN as a side effect

SSN Name Phone Number

123-32-1099 Fred (201) 555-1234

123-32-1099 Fred (206) 572-4312

909-43-4444 Joe (908) 464-0028

909-43-4444 Joe (212) 555-4000

234-56-7890 Jocelyn (212) 555-4000

Potential
Inconsistency

Non-solution: multiple values in
one field

First Normal Form:
Only one value in each field.

SSN Name Phone Number

123-32-1099 Fred (201) 555-1234
(206) 572-4312

909-43-4444 Joe (908) 464-0028
(212) 555-4000

Your common sense will tell you
how to fix this schema

SSN Name

123-32-1099 Fred

909-43-4444 Joe

SSN Phone Number
123-32-1099 (201) 555-1234

123-32-1099 (206) 572-4312

909-43-4444 (908) 464-0028

909-43-4444 (212) 555-4000

No more update or delete
anomalies.

What if you don’t have common sense?
There is a theory to tell you what to do!

R* must:
• Preserve the information of R
• Have minimal redundancy
• “Preserve dependencies”:

easy to check R’s constraints

• Give good query performance
(but the theory won’t help you there)

This theory formalizes the
concept of redundancy

normalize R

Functional Dependencies

Functional dependencies
generalize the idea of a key

If two tuples agree on the attributes A1, …, An,
then they must also agree on attributes B1, …, Bn.

A1, …, An functionally determine B1, …, Bn.

A1, …, An → B1, …, Bn

equiv

equiv

EmpID → Name, Phone, Office
Office → Phone Phone → Office

Name → EmpID isn’t likely to hold in all instances
of this schema, though it holds in this instance

More generally, an instance can tell you many
FDs that don’t hold, but not all those that do.

EmpID Name Phone Office

E0045 Alice 9876 SC 2119

E1847 Bob 9876 SC 2119A

E1111 Carla 9876 SC 2119A

E9999 David 1234 DCL 1320

Use your common sense to find
the FDs in the world around you

Product: name → price, manufacturer
Person: ssn → name, age
Company: name → stock price, president
School: student, course, semester → grade

We can define keys
in terms of FDs

Key of a relation R is a set of attributes that
1. functionally determines all attributes of R
2. none of its proper subsets have this property.

Superkey = set of attributes that contains a key.

Reasoning with FDs

1) Closure of a set of FDs
2) Closure of a set of attributes

The closure S+ of a set S of FDs
is the set of all FDs logically

implied by S.

R = {A, B, C, G, H, I}
S = {A → B, A → C, CG → H, CG → I, B → H}

Does A → H hold?
You can prove whether it does!

Compute the closure S+ of S
using Armstrong’s Axioms

1. Reflexivity
A1 ... An → every subset of A1 ... An

2. Augmentation
If A1 ... An → B1 ... Bm,
then A1 ... An C1 ... Ck → B1 ... Bm C1 ... Ck

3. Transitivity
If A1 ... An → B1 ... Bm and B1 ... Bm → C1 ... Ck,
then A1 ... An → C1 ... Ck

How to compute S+ using
Armstrong's Axioms

S+ = S;
loop {

For each f in S,
apply the reflexivity and augmentation rules
and add the new FDs to S+.

For each pair of FDs in S,
apply the transitivity rule and add the new FDs
to S+

} until S+ does not change any more.

You can infer additional rules from
Armstrong’s Axioms

Union
If X → Y and X → Z, then X → YZ
(X, Y, Z are sets of attributes)

Splitting
X → YZ, then X → Y and X → Z

Combining
X → Y and X → Z, then X → YZ

Pseudo-transitivity
X → Y and YZ → U, then XZ → U

The closure of a set of attributes
contains everything they
functionally determine

Given a set S of dependencies,

the closure of a set of attributes {A1 ... An},

written {A1 ... An}+,

is { B such that any relation that satisfies S also
satisfies A1 ... An → B }

It is easy to compute the closure
of a set of attributes

Start with X = {A1 ... An}.

repeat until X doesn’t change do:

if B1 ... Bm → C is in S,
and B1 ... Bm are all in X,
and C is not in X

then add C to X.

A B → C
A D → E

B → D
A F → B

{A, B}+ =
{A, F}+ =

{A, B, C, D, E}
{A, F, B, D, C, E}

What is the attribute closure good for?
1. Test if X is a superkey

– compute X+, and check if X+ contains all attrs
of R

2. Check if X → Y holds
– by checking if Y is contained in X+

3. Another (not so clever) way to compute
closure S+ of FDs
– for each subset of attributes X in relation R,

compute X+ with respect to S
– for each subset of attributes Y in X+, output

the FD X → Y

Reminder: intended goals of
schema refinement

• Minimize redundancy
• Avoid information loss
• Easy to check dependencies
• Ensure good query performance

Normal Forms
First Normal Form = all attributes are atomic
Second Normal Form (2NF) = obsolete

Boyce Codd Normal Form (BCNF)
Third Normal Form (3NF)
Fourth Normal Form (4NF)

Others...

Boyce-Codd Normal Form

A relation R is in BCNF if whenever there is a
nontrivial FD A1 ... An → B for R,

{A1 ... An} is a superkey for R.

An FD is trivial if all the
attributes on its right-hand side
are also on its left-hand side.

What are the nontrivial functional dependencies?
SSN → Name (plus the FDs that can be derived from that)

What are the keys?
The only key is {SSN, Phone Number}.
How do I know? Augmentation + minimality.

Is it in BCNF?
No. SSN is not a key.

SSN Name Phone Number

123-32-1099 Fred (201) 555-1234

123-32-1099 Fred (206) 572-4312

909-43-4444 Joe (908) 464-0028

909-43-4444 Joe (212) 555-4000

234-56-7890 Jocelyn (212) 555-4000

What if we are in a situation where
Phone Number → SSN?

SSN Name Phone Number

123-32-1099 Fred (201) 555-1234

123-32-1099 Fred (206) 572-4312

909-43-4444 Joe (908) 464-0028

909-43-4444 Joe (212) 555-4000

234-56-7890 Jocelyn (212) 555-9999

What are the nontrivial FDs?
Phone Number → SSN
SSN → Name
(plus FDs derived from these)

What are the keys?
Only {Phone Number}.
How do I know?
Augmentation, transitivity,

minimality.
Is it in BCNF?

No.

What about that alternative schema we
recommended earlier---are they in BCNF?
SSN Name

123-32-1099 Fred

909-43-4444 Joe

SSN Phone Number
123-32-1099 (201) 555-1234

123-32-1099 (206) 572-4312

909-43-4444 (908) 464-0028

909-43-4444 (212) 555-4000
For each relation:
What are its important FDs?
What are its keys?
Is it in BCNF?

What about that alternative schema we
recommended earlier---are they in BCNF?

SSN Phone Number
123-32-1099 (201) 555-1234

123-32-1099 (206) 572-4312

909-43-4444 (908) 464-0028

909-43-4444 (212) 555-4000

If Phone Number → SSN holds
Important FDS:
Phone Number → SSN.

Keys: {Phone Number}
Is it in BCNF? Yes.

If Phone Number → SSN doesn’t hold
Important FDS: none.
Keys: {SSN, Phone Number}
Is it in BCNF? Yes.

SSN Name

123-32-1099 Fred

909-43-4444 Joe

Important FDS: SSN → Name
Keys: {SSN}.
Is it in BCNF? Yes.

What about that alternative schema we
recommended earlier---are they in BCNF?

True or False:
Any 2-attribute relation is in BCNF.

SSN Name

123-32-1099 Fred

909-43-4444 Joe

SSN Phone Number
123-32-1099 (201) 555-1234

123-32-1099 (206) 572-4312

909-43-4444 (908) 464-0028

909-43-4444 (212) 555-4000

