CS411 Database Systems

03: The Relational Model

Kazuhiro Minami

Announcements

- Project stage 0 is due today
- Grade distribution of the course project
 - Stage 1 (Decide your application): 5%
 - Stage 2 (ER modeling): 5%
 - Stage 3 (Relational schema design): 10% - Stage 4 (Demo for basic functions): 30%
 - Stage 5 (Final demo/report): 50%
- · Grade distribution of the graduate project
 - Stage A (Decide your survey topic): 5%
 Stage B (Preliminary report): 30%

 - Stage C (Final report): 65%

Why do we need both the ER and relational models?

- · Relational model has just a single concept: tables
 - Allow us to express queries at a very high level
 - well-suited for efficient manipulations on computers
- ER model is richer: entities, relationships, attributes, etc.
 - well-suited for capturing application requirements
 - not so well-suited for computer implementation (no query language)

Each attribute has a type: its domain

- Integer, string, date, real
- Traditionally domains were not userdefinable, e.g., "map"
- Domains must be atomic (why? see later)

We can write a schema concisely:

Product(Name, Price, Category, Manufacturer)

DB schema = finite set of relation schemas.

Product(Name, Price, Category, Manufacturer), Vendor(Name, Address, Phone),

Now the fun part: translating an ER diagram into the relational model

How to translate an ER diagram to a relational schema

- Basic cases
 - -Entity set E = relation with attributes of E
 - Relationship R = relation with attributes being keys of related entity sets + attributes of R
- · Special cases
 - Combining two relations
 - -Translating weak entity sets
 - Translating is-a relationships and subclasses

It is OK to combine the relation for an entity set *E* with the relation for a one-one relationship from *E* to another entity set.

Drinkers(name, addr)
Favorite(drinker, beer)

Drinkers(name, addr, favoriteBeer)

What if each drinker could have several favorite beers?

Three ways to translate subclasses

- Object-oriented: each entity belongs to exactly one class; create a relation for each class, with all its attributes.
- E/R style: create one relation for each subclass, with only the key attribute(s) and attributes attached to that entity set;
- *Use null*: create one relation; entities have nulls in attributes that don't belong to them.

Option #1: the OO Approach

4 tables: each object can only belong to a single table

Product(<u>name</u>, price, category, manufacturer)

EducationalProduct(<u>name</u>, price, category, manufacturer, ageGroup, topic)

SoftwareProduct(name, price, category, manufacturer, platforms, requiredMemory)

EducationalSoftwareProduct(<u>name</u>, price, category, manufacturer, ageGroup, topic, platforms, requiredMemory)

All names are distinct

Option #2: the E/R Approach

Product(name, price, category, manufacturer)

EducationalProduct(name, ageGroup, topic)

SoftwareProduct(name, platforms, requiredMemory)

No need for a relation EducationalSoftwareProduct unless it has a specialized attribute:

EducationalSoftwareProduct(name, educational-method)

Same name may appear in several relations

Option #3: The Null Value Approach

Have one table:

Product (name, price, manufacturer, age-group, topic, platforms required-memory, educational-method)

Some values in the table will be NULL, meaning that the attribute not make sense for the specific product.

Too many meanings for NULL

Comparisons

- O-O approach good for queries like "find the color of ales made by Pete's."
 - Just look in Ales relation.
- E/R approach good for queries like "find all beers (including ales) made by Pete's."
 - Just look in Beers relation.
- Using nulls saves space unless there are *lots* of attributes that are usually null.