CS411 Database Systems

02: The Entity-Relationship Model

Kazuhiro Minami

Exercise 4.2.5 (Multiway relationships) At a birth, there is one baby, one mother, any number of Mothers nurses, and any number of doctors. For each, tell how to add arrows or other elements to the E/R diagram. Births Babies Nurses a) For every baby, there is a unique mother b) For every combination of a baby, nurse, and doctor, Doctors there is a unique mother c) For every combination of a (baby, mother, nurse, doctor) baby and a mother there is a = (Bob, Mary, Kate, Dave) unique doctor.

Exercise 2

- Q1. One way to represent students and the grades they get in course is to use entity sets corresponding to students, to courses, and to "enrollments." Enrollment entities form a "connecting" entity set between students and courses and can be used to represent not only the fact that a student is taking a certain course, but the grade of the student in the course. Draw an E/R diagram for this situation, indicating weak entity sets and the keys for the entity set. You can assume an appropriate set of attributes for "students" and "courses" entitysets.
- Q2. Modify your solution so that we can record grades of the student for each of several assignments within a course.

Subclasses

- Subclass = special case = fewer entities = more properties.
- Example: Ales are a kind of beer.
 - Not every beer is an ale, but some are.
 - Let us suppose that in addition to all the properties (attributes and relationships) of beers, ales also have the attribute color.

ER subclasses are different from object oriented subclasses

- In the object-oriented world, objects are in one class only.
 - Subclasses inherit properties from superclasses.
- In contrast, E/R entities have components in all subclasses to which they belong.
 - Matters when we convert to relations.

Principle #2: Avoid redundancy

- Don't say the same thing in two different ways.
- Redundancy wastes space and (more importantly) encourages inconsistency (i.e., update anomaly)
 - The two instances of the same fact may become inconsistent if we change one and forget to change the other, related version.

We could use a set of attributes instead of an entity set

Q: Can we remove the Manufactures entity set?

This design repeats the manufacturer's address once for each beer; loses the address if there are temporarily no beers for a manufacturer.

Principle #3: Don't overuse entity sets

An entity set should satisfy at least one of the following conditions:

 It is more than the name of something; it has at least one non-key attribute.

or

 It is the "many" in a many-one or manymany relationship.

Use arrows to represent the following conditions:

- a) Every baby is a result of a unique birth, and every birth is of a unique baby.
- b) In addition to (a), every baby has a unique mother.
- c) In addition to (a) and (b), for every birth there is a unique doctor.

In each case, what design flaws do you see?

Principle #4: Don't Overuse Weak Entity Sets

- Beginning database designers often make most entity sets weak, supported by all other entity sets to which they are linked.
- Instead, we create unique IDs for entity sets.
 - Social-security numbers, driver's license numbers, automobile VINs, ...
- Only use weak entity sets when necessary.
 - Example: unique player numbers across all football teams in the world.