CS 398 ACC
Spark SQL

Prof. Robert J. Brunner
Ben Congdon
Tyler Kim
How’s it going?

Final Office Hours: After this lecture // Tomorrow 4-6pm
- Please avoid Low-Effort/Private Piazza post

Final Autograder run:
- Tonight ~9pm
- Tomorrow ~3pm

● Due tomorrow at 11:59 pm.
● Latest Commit to the repo at the time will be graded.
● Last Office Hours today after the lecture until 7pm.
What's going on with the cluster?

People running “local” jobs on Master consumes disproportionate amount of CPU

- If master is unresponsive, it makes the entire cluster useless
- Please be courteous of other students during “peak” hours
 - We will be more aggressive in kicking out jobs if the problem continues
Course Cluster

Back-up / secondary cluster will be available.

Check the Cluster page on the website
 - Same SSH key
Outline

- Traditional Databases
- SQL
 - Optimizations
- Spark SQL
Outline

- Traditional Databases
- SQL
 - Optimizations
- Spark SQL
RDBMS

● Relational Database Management Systems
 ○ Systems that deal with relational data (data that points to other data)
● A database management system manages how the data is stored and retrieved. Usually the data is modified with SQL

● E.g: MySQL, PostgreSQL, OracleDB, etc
Other Features

- RDBMS handles data backups, logically storing data, distributing data to leader followers, permissions, data integrity, handling and load balancing queries, and optimization.
- RDBMSs do all of this “under the hood” (mostly)
RDBMS Types of Data

- RDBMSs like simple data: INTEGERS, STRINGS, etc
 - They don’t like handling JSON, HASHMAP, LISTS
 - Complex data types are more difficult for the SQL engine to optimize against

- If you think you need advanced data type functionality:
 - **Seriously rethink your application design**

- If you are absolutely sure that you need it:
 - You should probably use another application server.
Outline

- Traditional Databases
- **SQL**
 - Optimizations
 - Spark SQL
Structured Query Language

- Most of you have had some interaction with SQL.
- SQL was made for both programmers and for accountants who were used to spreadsheets.
- We can imagine taking data from spreadsheets, join from different sheets etc.
Basic Commands - Data Definition Language (DDL)

- DDL lets you create, destroy, alter, and modify constraints on data
- You can think of them as operations that set up where data will go

- CREATE TABLE (id INTEGER, name VARCHAR(255), location VARCHAR(255));
- ALTER TABLE ADD status INTEGER;
- ALTER TABLE ADD blah INTEGER NOT NULL;
- DROP TABLE;
Data Modification Language - DML

- This adds, deletes, selects, and updates data (basic CRUD operations)
- This lets you put data into the database tables

- `INSERT INTO table (col1, col2, ..) VALUES (v1, v2, ..), ..`
- `DELETE FROM table where col1 = …`
- `UPDATE table SET col1='asdf' WHERE col2='asd'`
- `SELECT * FROM table`
Data Modification Language Extensions

● The data modification language also lets you do more powerful things when retrieving data
 ○ We can have data GROUP BY a certain column(s)
 ○ Have data ORDER BY some column(s)
 ○ We can JOIN multiple spreadsheets based on a column

● We can have SQL calculate functions or aggregations on the fly
● Usually RDBMSs are optimized for read-heavy workloads
SQL Prepared Statements

- Actual interactions with the database.
 - INSERT INTO table VALUES (`+userid+`);

- What if userid = “1; SELECT * FROM table WHERE col1 NOT IN (“?
 - INSERT INTO table VALUES (1); SELECT * FROM table WHERE col1 NOT IN ();
 - This will give us back all the results from the database!
SQL Prepared Statements

- To avoid this, we have prepared statements
- `INSERT INTO table VALUES (?)` and, send userid separately
- This avoids the injection problem but doesn’t let SQL server optimize database queries
Outline

- Traditional Databases
- SQL
 - Optimizations
- Spark SQL
SQL Turing Completeness

- Every SQL statement (in ANSI SQL) will terminate
- The Non-Turing Completeness of SQL let’s us optimize many portions of queries
User tips for optimizing SQL queries

- Don’t use `SELECT *` statements, you usually are selecting more rows than need be

- If you have multiple levels of joins then you may want to consider staging your data into an intermediate table in order to reduce communication overhead

- Add indices! Indices can slow updates but drastically speed up complex queries if the indices are on the appropriate columns
SQL Optimizer: Prediction

- Consider a query like `select col1 from table where col1=1 AND col2=2;`
- Your server has the choice of filtering by col2 and then col1 or by col1 then col2.
- If the server knows that there are a lot of NULL values in col2 which would reduce the number of rows in consideration a lot, it will filter based on col2 first and then filter on col1 because the complexity will be NUM_ROWS * SMALL_NUMBER
SQL Optimizer: Lazy Joins

- A join is when you combine two tables on a column

<table>
<thead>
<tr>
<th>c1</th>
<th>c2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c3</th>
<th>c4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Example Join

```sql
SELECT * FROM t1 JOIN t2 USING (c1, c4);
```

<table>
<thead>
<tr>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Lazy Join

- SQL may filter the data before joining, may group by before joining if you know that one of the columns is in one of the table
- This is very ad-hoc prediction because SQL usually doesn’t keep track of super in depth statistics
- As a SQL server runs longer, then it gets better at this prediction
 - The main reason that it can’t keep track of all of this information is due to concurrency bottlenecks so it makes static analyses instead
Outline

● Traditional Databases
● SQL
 ○ Optimizations
● Spark SQL
Spark SQL

- Distributed in-memory computation on massive scale (Just like Spark!)
- Can use all data sources that Spark supports natively:
 - Can import data from RDDs
 - JSON/CSV files can be loaded with inferred schema
 - Parquet files - Column-based storage format
 - Supported by many Apache systems (big surprise!)
 - Hive Table import
 - A popular data warehousing platform by Apache
Spark SQL

- SQL using Spark as a “Database”
 - Spark SQL is best optimized for retrieving data
 - Don’t UPDATE, INSERT, or DELETE
- Optimization handled by a newer optimization engine, Catalyst
 - Creates physical execution plan and compiles directly to JVM bytecode
- Can function as a compatibility layer for firms that use RDBMS systems
Spark DataFrames

- Dataset organized into named columns
- Similar to structure as Dataframes in Python (i.e. Pandas) or R
- Lazily evaluated like normal RDDs
- Tends to be more performant than raw RDD operations

https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html
Pandas DataFrame

Does in-memory computing, but:
- Not scalable by itself.
- Not fault tolerant.

```python
import pandas as pd

df = pd.read_csv("/path/to/data.json")

df
```

<table>
<thead>
<tr>
<th>first_name</th>
<th>last_name</th>
<th>age</th>
<th>preTestScore</th>
<th>postTestScore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jason</td>
<td>Miller</td>
<td>42</td>
<td>4</td>
<td>25,000</td>
</tr>
<tr>
<td>Molly</td>
<td>Jacobson</td>
<td>52</td>
<td>24</td>
<td>94,000</td>
</tr>
<tr>
<td>Tina</td>
<td></td>
<td>36</td>
<td>31</td>
<td>57</td>
</tr>
<tr>
<td>Jake</td>
<td>Milner</td>
<td>24</td>
<td>.</td>
<td>62</td>
</tr>
<tr>
<td>Amy</td>
<td>Cooze</td>
<td>73</td>
<td>.</td>
<td>70</td>
</tr>
</tbody>
</table>
Spark DataFrames

- When to prefer **RDDs** over DataFrames:
 - Need low-level access to data
 - Data is mostly unstructured or schemaless

- When to prefer **DataFrames** over RDDs:
 - Operations on structured data
 - If higher-level abstractions are useful (i.e. joins, aggregation, etc.)
 - High-performance is desired, and workload fits within DataFrame APIs
 - Catalyst optimization makes DataFrames more performant on average
Spark DataSets

- Strongly-typed DataFrames
- Only accessible in Spark2+ using Scala
- Operations on DataFrames are all statically typed, so you catch type errors at compile-time

Data Ingest (RDD)

```python
from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

users_rdd = sc.parallelize([[1, 'Alice', 10], [2, 'Bob', 8]])

users = sqlContext.createDataFrame(
    users_rdd,
    ['id', 'name', 'num_posts'])

users.printSchema()

#root
# |-- id: long (nullable = true)
# |-- name: string (nullable = true)
# |-- num_posts: long (nullable = true)
```
Data Ingest (JSON)

```python
from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

users = sqlContext.read.json("/path/to/users.json")

users.printSchema()

# root
#  |-- id: long (nullable = true)
#  |-- name: string (nullable = true)
#  |-- num_posts: long (nullable = true)
```
Register users DataFrame as a table called "users"
```
users.createOrReplaceTempView('users')
```

Query the table
```
sqlContext.sql(
    'SELECT * FROM users WHERE name="Bob"
').collect()
```

[Row(id=2, name='Bob', num_posts=8)]
DataFrame API

Same query can be done with DataFrame API

users.filter(users.name=='Bob').collect()
[Row(id=2, name='Bob', num_posts=8)]

users.filter(users.name=='Eve').select('num_posts').collect()
[Row(num_posts=10)]
Wednesday

Google Cloud Platform Guest Lecture.

Free GCP Credits for the attendees :)

MP 5

Due in next Tuesday (2/13) at 11:59pm

Topic: “SparkSQL”

> Check Piazza for Q&A and Announcements