CS 398 ACC
MapReduce Part 2

Prof. Robert J. Brunner
Ben Congdon
Tyler Kim
Change in Quiz Policy

Starting with Quiz 2:

- Only **two** attempts allowed
 - But, you can see all that you got right/wrong
MP1

How’s it going?
Tentative Auto-Grader Schedule

- Wednesday Evening (~9pm)
- Friday Evening (~9pm)
- Sunday Evening (~9pm)
- Monday Evening (~9pm)
- Tuesday Midday (~2pm)

- Results location: /mp1/grade_report.txt
- This will be posted on Piazza as well.
Outline

- MapReduce Programming
 - Word Count Implementation
 - Conventions / Pitfalls
- Execution Options
- MapReduce Use Cases
Outline

- **MapReduce Programming**
 - Word Count Implementation
 - Conventions / Pitfalls
- Execution Options
- MapReduce Use Cases
Reminders...

\[
\begin{align*}
\langle \text{key_input}, \text{val_input} \rangle & \quad \Rightarrow \quad \langle \text{key_inter}, \text{val_inter} \rangle & \quad \Rightarrow \quad & \langle \text{key_out}, \text{val_out} \rangle \\
\text{Map} & \quad & \text{Reduce}
\end{align*}
\]

- **Map:**
 - **Input:** “Original” input data or key/value pairs from previous chained job
 - **Output:** Intermediate key/value pairs

- **Reduce:**
 - **Input:** Intermediate key/value pair (per key)
 - **Output:** Final key/value pairs
class WordCount(MRJob):

 def mapper(self, key, val):
 for word in WORD_REGEX.findall(val):
 yield (word, 1)
def reducer(self, key, vals):
 total_sum = 0

 # Iterate and count all occurrences of the word
 for v in vals:
 total_sum += 1

 # Yield the word and number of occurrences
 yield key, total_sum
def more_efficient(self, key, values):
 for v in values:
 yield key, v + 10

def inefficient(self, key, values):
 # List comprehension loads all values into memory
 plus_10 = [v + 10 for v in values]
 for v in plus_10:
 yield key, v

Reminders...

- Python Iterators
MapReduce - Common Conventions

- **Composite Key**
 - Use more than one attribute in the construction of a key
 - i.e. \(<\text{city, state}, \text{population}>\)

- **Composite Value**
 - Use more than one attribute in the construction of a value
 - i.e. \(<\text{user}_\text{id}, (\text{num_friends, num_posts})>\)
 - Can also use custom serialization methods for intermediate values
 - i.e. JSON, Python Pickling
 - Just be careful about size overhead (for bandwidth)
MapReduce - Common Conventions

- **Joins**
 - Idea: Use input datasets with more than one format
 - Mapper: Add flag to output to indicate value type
 - Reducer: Reconcile attributes by key into a single record

num_posts.csv
Alice;10
Bob;15

num_friends.csv
Alice;105
Bob;85

Mapper

- <Alice, (10, POSTS)>
- <Bob, (15, POSTS)>
- <Alice, (105, FRIENDS)>
- <Bob, (85, FRIENDS)>

Reducer

- <User, (Posts, Friends)>
 - <Alice, (10, 105)>
 - <Bob, (15, 85)>
MapReduce - Common Pitfalls

● “Leaky” Reducers
 ○ **Source**: Reducers that use too much memory (i.e. keeping all values in memory)
 ■ Reducing functions have “too much” state
 ■ Might not be due to bad reducer design, but rather empirical workload/machine limitations
MapReduce - Common Pitfalls

- “Leaky” Reducers
 - Example:

    ```python
    # Want to count number of unique values
    def reduce(self, key, values):
        # 'unique' will store all distinct values we see
        unique = set()
        for v in values:
            if v not in unique:
                unique.add(v)
        # yield size of unique value set
        yield (key, len(unique))
    ```
MapReduce - Common Pitfalls

● “Leaky”Reducers
 ○ **Source:**Reducers that use too much memory (i.e. keeping all values in memory)
 ■ Reducing functions have “too much” state
 ■ Might not be due to bad reducer design, but rather empirical workload/machine
 limitations
 ○ **Solutions:**
 ■ Benchmark workload - Maybe it’s not an issue
 ■ Take advantage of secondary sort
 ■ Use the fact that values are passed as an iterator (Use a “stream” mindset)
MapReduce - Common Pitfalls

- “Leaky” Reducers
 - Example (Fixed):
    ```python
    # Want to count number of unique values
    def reduce(self, key, values):
        prev, count = None, 0

        # Here we assume that values is sorted
        for v in values:
            if v != prev:
                count += 1
                prev = v

        yield (key, count)
    ```
MapReduce - Common Pitfalls

- “Hot” Keys
 - Source: Some keys may contain many, many more values than most other keys
MapReduce - Common Pitfalls

- **“Hot” Keys**
 - **Example:**
 - Google Web Indexing
 - Average Key Size: 300 KB
 - Some keys have 50+ GB

<table>
<thead>
<tr>
<th>Reduce key</th>
<th>Reduce input size</th>
</tr>
</thead>
<tbody>
<tr>
<td>*.blogspot.com</td>
<td>82.9G</td>
</tr>
<tr>
<td>cgi.ebay.com</td>
<td>58.2G</td>
</tr>
<tr>
<td>profile.myspace.com</td>
<td>56.3G</td>
</tr>
<tr>
<td>yellowpages.superpages.com</td>
<td>49.6G</td>
</tr>
<tr>
<td>www.amazon.co.uk</td>
<td>41.7G</td>
</tr>
<tr>
<td>average reduce input size for a given key</td>
<td>300K</td>
</tr>
</tbody>
</table>

Source: https://research.google.com/pubs/pub36249.html
MapReduce - Common Pitfalls

● “Hot” Keys
 ○ **Source:** Some keys may contain many, many more values than most other keys
 ○ **Solutions:**
 ■ Benchmark workload - Maybe it’s not an issue
 ■ Write a custom partitioner so that load is still distributed evenly across machines
 ● Partitioner determines which intermediate keys go to which reducer
 ● Goal: Distribute load evenly so “hot keys” don’t all go to one reducer

■ Can you split up keys further and recombine them in a chained MR step?
MapReduce - Common Pitfalls

- Python Specific: Handling Types
 - Input data is almost always `str` / `bytes`
 - Java allows you to define custom types and serialization
 - Python can do this too (i.e. with Pickling), but it is not required
Outline

● MapReduce Programming
 ○ Word Count Implementation
 ○ Conventions / Pitfalls

● Execution Options

● MapReduce Use Cases
MapReduce Execution Options

- Hadoop (native Java)
- Hadoop Streaming
- External Frameworks (MRJob)
MapReduce Programming Options

- **Hadoop MapReduce (native)**
 - Preferred, most performant method for writing Hadoop MapReduce jobs
 - Minimum Required Components per Job:
 - Mapper, Reducer, Job execution boilerplate
 - Additional Customizable Components:
 - **InputFormat**: Splits input files into chunks to be distributed to mappers
 - **Partitioner**: Controls which keys go to which reducers (default: HashPartitioner)
 - **OutputFormat / OutputCommitter**: Handles the end of the reduce phase (usually writing job output to disk)
MapReduce Programming Options

- **Hadoop Streaming**
 - Hadoop copies arbitrary binary executable(s) for mappers and reducers
 - Uses STDIN/STDOUT to stream data to mappers/reducers
 - **Mapper**: Each input record is a new line
 - **Reducer**: You receive a stream of arbitrary k/v pairs (sorted by key)
 - You (the program) have to figure out when you switch from one key to the next
 - Still parallel, but difficult to work in
 - Everything is text; key/values are usually just tab separated
 - Allows non-Java languages to be used on the Hadoop Framework
MapReduce Programming Options

- Aside: Local Unix Commands
 - $ echo $DATA | ./mapper | sort -k1,1 | ./reducer > output
 - Not parallel (or advisable), but useful for debugging Hadoop Streaming jobs
 - Similar to Hadoop Streaming in that you use an arbitrary executable as a mapper/reducer
MapReduce Programming Options

- **MRJob (External Framework)**
 - Python Framework for writing / running MapReduce jobs
 - Built by Yelp
 - Write Once, Run “Anywhere” (actually, though!)
 - Supported Execution Environments:
 - Local Execution (MP1)
 - Hadoop (MP2)
 - GCP Dataproc - Google’s Hosted MapReduce
 - AWS EMR - Amazon’s Hosted Hadoop
MapReduce Programming Options

- **MRJob (External Framework)**
 - How does it work?
 - Hadoop Streaming under-the-hood
 - Provides similar abstractions as the Native Java API
Outline

- MapReduce Programming
 - Word Count Implementation
 - Conventions / Pitfalls
- Execution Options
- MapReduce Use Cases
Distributed Grep

Used for: Filtering, Parsing, or Validation

- **Input**: Large set of files
- **Mapper**: Look at input and emit records containing the query term
- **Reducer**: Pass through all records unchanged
Graph Processing

Web-Linked / Web Scraping Graph (Similar to Problem 2 of MP1)

- **Input**: HTML Text
- **Map output**: <target, source> pairs
 - i.e. Search for
- **Reduce output**: <target, list(source)> pairs

Used by Google for web search indexing
Geospatial / Satellite Data

- **Input:** Geospatial coordinates, satellite data
- **Map output:**
 - `<map_tile, tile_information>` pairs
 - “Chunk” geographic region by tile

- **Reduce output:**
 - `<map_tile, final_tile_info>` pairs

Used by Google Maps to reconcile satellite imagery over time

Source: https://research.google.com/pubs/pub36249.html
What is required:

Programmer:

1. Don’t need to know specifics about parallel/distributed computing/programming.
2. Know the data source/format
3. Write a map/reduce programs
4. Submit jobs and wait :)
What is required:

Framework/Library (e.g. mrjob, hadoop, etc.):

1. Parallelize Map (distribute to mapping machines)
2. Transfer Data / Shuffle Data
3. Parallelize Reduce (distribute to reducing machines)
4. Deal with failure, missing values
5. Implement data transfer. Input/Output/Artifacts. Interact with distributed file system
Next Week:

- Lets you run MapReduce on many computers for a single task.
- Can scales to 1000s of nodes
- Processes Petabytes with (relative) ease
- Get on course cluster!