
Universal	Turing	Machines	&	
Church-Turing	Thesis



TM	recap

• DFA	with	(infinite)	tape.
• One	move:			read,	write,	move,	change	state.



Transition	Function

δ:	Q x Γ à Q		x Γ x {L,	R,	S}	

current
state

symbol
scanned

new
state

symbol
to	write

direction	to
move	on	tape	

δ(q,a)	=	(p,	b,	L)	
from	state	q,	on	reading	a:

go	to	state	p
write	b
move	head	Left		



TM	programming	tricks

• checking	off	symbols
• shifting	over
• using	finite	control	memory
• subroutine	calls

• 2-way	infinite	tape
• multiple	tracks
• multiple	tapes

TM	“extensions”



Example/Refresher

TM	that	adds	two	unary	numbers.

7	+	4:										$0000000#0000	 				initial	 tape	contents

=	11:												$00000000000	 				final	tape	contents

Strategy?
• go	right	to	first	blank,	turning	#	into	0
• back	up	one	cell,	erase	0
• return	to	first	cell



Example/Refresher

7	+	4:										$0000000#0000	 				initial	 tape	contents

Strategy?
• go	right	to	first	blank,	turning	#	into	0

δ(q0,0)	=	(q0,0,R)			
δ(q0,#)	=	(q0,0,R)	

• back	up	one	cell,	erase	0
δ(q0,B)	=	(q1,B,L)	
δ(q1,0)	=	(q2,B,L)	

• return	to	first	cell
δ(q2,0)	=	(q2,0,L)
δ(q2,$)	=	(qhalt,$,R)		



Special	purpose	machines?
• Different	DFA	for	different	languages	(duh)
• Different	TMs	for	different	languages,	
functions.

• Early	computer	programming	was	no	different



Von	Neumann	Architecture

• stored-program	computer
– programs	can	be	data!
– program-as-data	determines	
subcircuits to	employ

• fetch-decode-execute	cycle
• hence,	one	computer	can	
behave	like	any

http://idiomzero.blogspot.com/2010/07/8-anecdotes-about-john-von-neumann.html



Original	Idea	was	due	to	Turing
“I	know	that	in	or	about	1943	or	'44 von	Neumann	was	well	

aware	of	the	fundamental	importance	of	Turing's	paper	
of	1936	...	Von	Neumann	introduced	me	to	that	paper	
and	at	his	urging	I	studied	it	with	care.	Many	people	have	
acclaimed	von	Neumann	as	the	"father	of	the	computer"	
(in	a	modern	sense	of	the	term)	but	I	am	sure	that	he	
would	never	have	made	that	mistake	himself.	He	might	
well	be	called	the	midwife,	perhaps,	but	he	firmly	
emphasized	to	me,	and	to	others	I	am	sure,	that the	
fundamental	conception	is	owing	to	Turing— in	so	far	as	
not	anticipated	by	Babbage	...	“

- Stan	Frankel	– Los	Alamos



Universal	TM

• A	single TM	Mu	that	can	compute	anything	
computable!

• Takes	as	input
– the	descriptionof	some	other TM	M
– data	w for	M to	run	on

• Outputs
– the	results	of	running	M(w)

Need	to	make	precise	what	the	description of	a	TM	is



Coding	of	TMs
• Show	how	to	represent	every	TM	as	a	natural	
number

• Lemma:		If	L	over	alphabet	{0,1}	is	accepted	by	
some	TM	M,	then	there	is	a	one-tape	TM	M’ that	
accepts	L,	such	that
– Γ =	{0,1,B}
– states	numbered	1,	...,	k
– q1 is	the	unique	start	state
– q2 is	the	unique	halt/accept	state
– q3 is	the	unique	halt/reject	state

• So,	to	represent	a	TM,	we	need	only	list	its	set	of	
transitions	– everything	else	is	implicit	by	above



Listing	Transition

• Use	the	following	order:
δ(q1,0),	δ(q1,1),	δ(q1,B),	δ(q2,0),	δ(q2,1),	
δ(q2,B),...
...	δ(qk,0),	δ(qk,1),	δ(qk,B).

• Use	the	following	encoding:
111 t1		11 t2		11 t3		11 ...	 11 t3k 111

where	ti is	the	encoding	of	transition	i as	given	on	
the	next	slide.	



Encoding	a	transition

Recall	transition	looks	like		δ(q,a)	=	(p,	b,	L)
So,	encode	as	
<state>	1 <input>	1 <new	state>	1 <new-symbol>	1 <direction>
where		
• state	qi represented	by 0i

• 0,	1,	B	represented	by		0,	00,	000
• L,	R,	S	represented	by	0,	00,	000

δ(q3,1)	=	(q4,	0,	R)	represented	by			0001001000010100	
q3 1 q4 0 R



Typical	TM	code:

• Begins,	ends	with	111
• Transitions	separated	by	11
• Fields	within	transition	separated	by	1
• Individual	fields	represented	by	0s

11101010000100100110100100000101011.....11.......11.......111	



TMs	are	(binary)	numbers

• Every	TM	is	encoded	by	a	unique	element	of	N
• Convention:		elements	of	N	that	do	not	
correspond	to	any	TM	encoding	represent	the	
“null	TM”	that	accepts	nothing.

• Thus,	every	TM	is	a	number,	and	vice	versa
• Let	<M>	mean	the	number	that	encodes	M
• Conversely,	let	Mn be	the	TM	with	encoding	n.



Universal	TM	Mu

Construct	a	TM		Mu such	that
L(Mu)	=	{ <M>	#	w |	M	accepts	w}	

Thus,	Mu is	a	stored-program	computer.
It	reads	a	program	<M>	and	executes	it	on	data	w

Mu simulates	the	run	of	M on	w

A		single	TM	captures	the	notion	of	“computable”	!!



How	Mu works

3	tapes
• Tape	1:		holds	input	M and	w;	never	changes
• Tape	2:		simulates	M’s	single	tape
• Tape	3:		holds	M’s	current	state

1 1 1 t1 1 1 t2 1 1 ... t3k 1 1 1 # w

Input	M Input	w



Universal	TM		Mu

Phase	1:		Check	if	<M>	is	a	valid	TM	on	tape	1
– No	four	1’s	in	a	row
– Three	initial,	ending	1’s
– substring	110i10j1	doesn’t	appear	twice
– appropriate	number	of	0’s	between	1’s	in	
transition	codes:		11000010100000100001...
(0000	does	not	encode	a	0,1,or	B	to	write)

– could	check	that	transitions	are	in	right	order,	and	
form	a	complete	set	(but	not	necessary)

– etc.
If	not	valid,	then	halt	and	reject



Phase	2:		Set	up
– copy	w to	tape	2,	with	head	scanning	first	symbol
– write	0	on	tape	3	indicating	M is	in	start	state	q1

11101010000100100110100100000101011......111	 #	100110

$100110

$0

Tape	1

Tape	2

Current	contents	of	M’s	tape

Current	state	of	M

Tape	3

Code	for	M

If	at	any	time,	Tape	3	holds	00		(or	000),	then	halt	and	accept	(or	reject)



Phase	3:		Repeatedly	simulate	steps	of	M

111010100001001001101001000001010011......111	 #	100110

$100110

$0

Tape	1

Tape	2

Current	contents	of	M’s	tape

Current	state	of	M	

Tape	3

Code	for	M

If	tape	3	holds	0i and	tape	2	is	scanning	1,	then	search	for
substring		110i1001	on	tape	1	

copy	new	state	00000	to	tape	3

write	a	0	under	tape	2’s	head

move	tape	2	head	to	the	right
what	to	do	next

Where	in	code	is	next	transition?



Phase	3:		After	the	single	move

111010100001001001101001000001010011......111	 #	100110

$000110

$00000

Tape	1

Tape	2

Current	contents	of	M’s	tape

Current	state	of	M	

Tape	3

Code	for	M
copy	new	state	00000	to	tape	3

write	a	0	under	tape	2’s	head

move	tape	2	head	to	the	right

Check	if	00	or	000	is	on	tape	3;		if	so,	halt	and	accept	or	reject

Otherwise,	simulate	the	next	move	by	searching	for	pattern.
In	this	example,	the	next	pattern	=	 1100000101



Exercise

• Show	how	UTM	on	input	<M>#w#t where	t is	
a	binary	number	simulates	M on	w for	t time	
steps

• Is	quite	useful	in	simulating	
– Multiple	machines	in	parallel
– Dovetailing
– Etc



Towards	“real”	computers:	RAMs

Random	Access	Machine:
• finite	number	of	arithmetic	registers
• infinite	number	of	memory	locations
• instruction	set	(next	page)
• program	instructions	written	in	continuous	
block	of	memory	starting	at	location	1	and	all	
registers	set	to	0.



RAM	instruction	set
Instruction Meaning

Add	X,	Y Add contents	of	register	X	and	Y,	and	place	
result	in	register	X

LOADC	X,	num Place	constant	num in	register	X

LOAD	X,	M Put	contents	of	memory	loc M	into	register	X

LOADI	X,	M Indirect	addressing:	 	put	value(value(M)) into	
register	X

STORE X,	M Copy	contents	of	 reg X	into	mem location	M

JUMP	X,	M If	register	X	=	0,	then	next	instruction	 is	at	
memory	 location	M	(otherwise,	 next	
instruction is	the	one	following	 the	current	
one,	as	usual)

HALT Halt	(duh)



TMs	can	simulate	RAMs

• Can	write	a	“TM-interpreter”	of	RAM	code	
Thus,	no	more	TM	programming.

• Actual	simulation	has	low	overhead	(though	
memory	is	not	random-access).



TM	tapes
• Instruction-location	tape
– stores	memory	location	where	next	instruction	is
– initially	contains	only	“1”

• Register	tape
– stores	register	numbers	and	their	contents,	as	
follows:			#	<reg-num>	#	<contents>	#	..	etc.

– Example:		suppose	R1	has	11,	and	R4	has	101,	and	
all	other	registers	are	empty.			Then	register	tape:

$ # 1 , 1 1 # 1 0 0 , 1 0 1 # . . .



TM	tapes
• Memory	tape	– similar	to	register	tape,	but	
can	hold	numbers,	OR	instructions:

numbers:			#	<mem-location>	,	<value>	#	...
instructions:			
example:	mem location	101	holds	ADD	3,6

# 1 0 1 , A
D
D

, 1 1 , 1 1 0 # . . .

single	symbol

• 5	work	tapes



TM	setup

• Blank	register	tape
• Memory	tape	holds	RAM	program,	starting	at	
memory	location	1.		No	other	data	stored.	

• 1	on	instruction-location	tape



TM	step	overview

(many	TM	steps	for	each	RAM	step)

• Read	instruction-location	tape
• search	memory	tape	for	the	instruction
• execute	the	instruction,	changing	register	and	
memory	tapes	as	needed

• update	the	location-instruction	tape

In	other	words,	it	goes	through	a	fetch-decode-execute	cycle



Example

• Suppose	instruction	location	tape	holds	only:
$ 1 0 1

• Scan	memory	tape,	looking	for	“#	1	0	1	,”	
Suppose	it	finds

. . # 1 0 1 , A
D
D

, 1 1 , 1 1 0 #

• It	finds	“ADD”	following	“,” and	switches	to	
special	state	qadd to	handle	the	addition



Example	(cont.)
# 1 0 1 , A

D
D

, 1 1 , 1 1 0 #

• first	argument	is	in	register	11	so	search	
register	tape	for:

qadd

# 1 1 , <bitstring>

• then	copy	<bitstring>	to	worktape 1
• similarly,	search	for, find,	place	value	of	
register	110	onto	worktape 2



Example	(cont.)

• Now	go	to	subroutine	to	add	worktape 1	+	
worktape 2,	place	results	on	worktape 3.

• Result	must	go	back	into	register	11
• Search	register	tape	again	for	

# 1 1 , <bitstring>

• Replace	<bitstring>	with	new	value	copied	
from	worktape 3,	shifting	as	necessary

• Add	1	to	instruction-location	tape



RAM	simulation
• MANY details	left	out
• Other	types	of	instructions	are	similar
• Number	of	steps	to	simulate	RAM?
• Delicate	issue....	does	RAM	actually	have	
constant-time	access	to	infinite	memory?

• Can	show	(beyond	this	course)	for	
“reasonable”	time	model	on	a	RAM,	if	T(n)	
steps	are	required,	then	on	a	TM,	only	T(n)2	
steps.		(T(n)3 if	RAM	has	mult.	and	div.)



Church-Turing	thesis
• TMs	capture	notion	of	“computable”
• Evidence
– RAM	computer
– general	recursive	functions	(Gödel	&	Herbrand)

• constant/projection/successor/composition/recursion
– λ-calculus	(Church)	for	defining	functions	(CS	421)
– general	string-rewriting-system

• unrestricted	grammar,	productions	of	form	α àβ for	any	α
and	β

– attempts	to	extend	TMs

All	give	you	exactly	the	TM-computable	functions


