CS/ECE 374: Algorithms & Models of Computation

More on SAT

Lecture 25 April 27, 2023

Part I

Circuit SAT

Chandra Chekuri (UIUC)

CS/ECE 374

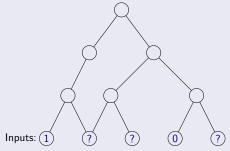
2

Spring 2023 2 / 35

Circuits

Definition

A circuit is a directed acyclic graph with

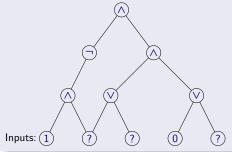


- Input vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
- ② Every other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

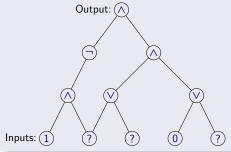


- Input vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
- ② Every other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed *acyclic* graph with



- Input vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
- ② Every other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Claim

CSAT is in **NP**.

- Certificate: Assignment to input variables.
- Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem SAT \leq_P 3SAT \leq_P CSAT. Theorem

```
\mathsf{CSAT} \leq_P \mathsf{SAT} \leq_P \mathsf{3SAT}.
```

Converting a CNF formula into a Circuit

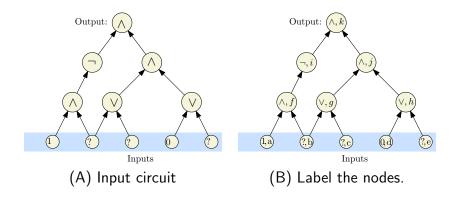
Given 3CNF formulat φ with *n* variables and *m* clauses, create a Circuit *C*.

- Inputs to C are the n boolean variables x_1, x_2, \ldots, x_n
- Use NOT gate to generate literal $\neg x_i$ for each variable x_i
- For each clause (ℓ₁ ∨ ℓ₂ ∨ ℓ₃) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

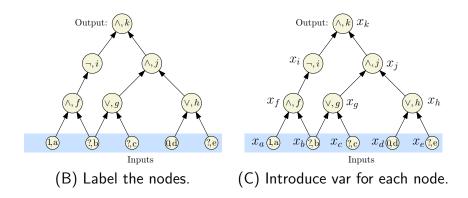
Example

$$\varphi = \left(\mathbf{x}_1 \lor \lor \mathbf{x}_3 \lor \mathbf{x}_4 \right) \land \left(\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \neg \mathbf{x}_3 \right) \land \left(\neg \mathbf{x}_2 \lor \neg \mathbf{x}_3 \lor \mathbf{x}_4 \right)$$

Label the nodes



Introduce a variable for each node



Write a sub-formula for each variable that is true if the var is computed correctly.

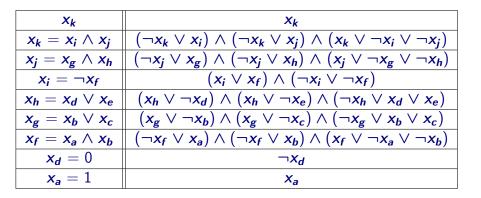


 $\begin{array}{l} x_k \quad (\text{Demand a sat' assignment!}) \\ x_k = x_i \wedge x_j \\ x_j = x_g \wedge x_h \\ x_i = \neg x_f \\ x_h = x_d \lor x_e \\ x_g = x_b \lor x_c \\ x_f = x_a \wedge x_b \\ x_d = 0 \\ x_a = 1 \end{array}$

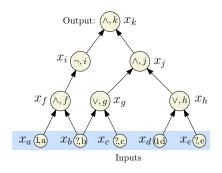
(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Convert each sub-formula to an equivalent CNF formula



Take the conjunction of all the CNF sub-formulas



$$\begin{array}{l} x_k \wedge (\neg x_k \vee x_i) \wedge (\neg x_k \vee x_j) \\ \wedge (x_k \vee \neg x_i \vee \neg x_j) \wedge (\neg x_j \vee x_g) \\ \wedge (\neg x_j \vee x_h) \wedge (x_j \vee \neg x_g \vee \neg x_h) \\ \wedge (x_i \vee x_f) \wedge (\neg x_i \vee \neg x_f) \\ \wedge (x_h \vee \neg x_d) \wedge (x_h \vee \neg x_e) \\ \wedge (\neg x_h \vee x_d \vee x_e) \wedge (x_g \vee \neg x_b) \\ \wedge (x_g \vee \neg x_c) \wedge (\neg x_g \vee x_b \vee x_c) \\ \wedge (\neg x_f \vee x_a) \wedge (\neg x_f \vee x_b) \\ \wedge (x_f \vee \neg x_a \vee \neg x_b) \wedge (\neg x_d) \wedge x_a \end{array}$$

We got a $\overline{\rm CNF}$ formula that is satisfiable if and only if the original circuit is satisfiable.

If or each gate (vertex) v in the circuit, create a variable x_v
Case ¬: v is labeled ¬ and has one incoming edge from u (so x_v = ¬x_u). In SAT formula generate, add clauses (x_u ∨ x_v), (¬x_u ∨ ¬x_v). Observe that

$$x_{v} = \neg x_{u}$$
 is true $\iff (x_{u} \lor x_{v}) (\neg x_{u} \lor \neg x_{v})$ both true.

(...)

Continued...

• Case \lor : So $x_v = x_u \lor x_w$. In SAT formula generated, add clauses $(x_v \lor \neg x_u)$, $(x_v \lor \neg x_w)$, and $(\neg x_v \lor x_u \lor x_w)$. Again, observe that

$$\begin{pmatrix} x_{\boldsymbol{v}} = x_{\boldsymbol{u}} \lor x_{\boldsymbol{w}} \end{pmatrix} \text{ is true } \iff \begin{pmatrix} (x_{\boldsymbol{v}} \lor \neg x_{\boldsymbol{u}}), \\ (x_{\boldsymbol{v}} \lor \neg x_{\boldsymbol{w}}), \\ (\neg x_{\boldsymbol{v}} \lor x_{\boldsymbol{u}} \lor x_{\boldsymbol{w}}) \end{pmatrix} \text{ all true.}$$

Continued...

• Case \land : So $x_v = x_u \land x_w$. In SAT formula generated, add clauses $(\neg x_v \lor x_u)$, $(\neg x_v \lor x_w)$, and $(x_v \lor \neg x_u \lor \neg x_w)$. Again observe that

$$\begin{aligned} x_{\boldsymbol{v}} &= x_{\boldsymbol{u}} \wedge x_{\boldsymbol{w}} \text{ is true } \iff \begin{pmatrix} (\neg x_{\boldsymbol{v}} \lor x_{\boldsymbol{u}}), \\ (\neg x_{\boldsymbol{v}} \lor x_{\boldsymbol{w}}), \\ (x_{\boldsymbol{v}} \lor \neg x_{\boldsymbol{u}} \lor \neg x_{\boldsymbol{w}}) \end{aligned} \text{ all true.} \end{aligned}$$

Continued...

- If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v . If $x_v = 0$ add clause $\neg x_v$
- 2 Add the clause x_v where v is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

- \Rightarrow Consider a satisfying assignment *a* for *C*
 - Find values of all gates in C under a
 - **2** Give value of gate \mathbf{v} to variable $\mathbf{x}_{\mathbf{v}}$; call this assignment \mathbf{a}'
 - **3** a' satisfies φ_{C} (exercise)
- $\Leftarrow \text{ Consider a satisfying assignment } a \text{ for } \varphi_{\textit{C}}$
 - Let a' be the restriction of a to only the input variables
 - 2 Value of gate v under a' is the same as value of x_v in a
 - Thus, a' satisfies C

Part II

Reducing Problems to SAT and Circuit SAT

Power of SAT and CSAT

SAT and CSAT are meta-problems

Allow us to express/model problem using constraints. In essense they allow programming with constraints of certain restricted type.

Goal: examples to drive home the point

Reduce Directed Hamilton Path to SAT

Given directed graph G = (V, E), does it have a Hamilton path?

Given **G** obtain CNF formula φ_G such that **G** has a Hamilton Path iff φ_G is satisfiable

Reduce Directed Hamilton Path to SAT

Given directed graph G = (V, E), does it have a Hamilton path?

Given **G** obtain CNF formula φ_G such that **G** has a Hamilton Path iff φ_G is satisfiable

Alternative view: Program/express using constraints

- What are variables?
- What are the constraints?

Reduce Directed Hamilton Path to SAT

Given directed graph G = (V, E), does it have a Hamilton path?

Given ${\it G}$ obtain CNF formula $\varphi_{\it G}$ such that ${\it G}$ has a Hamilton Path iff $\varphi_{\it G}$ is satisfiable

Alternative view: Program/express using constraints

- What are variables?
- What are the constraints?

One approach: *G* has a Hamilton path iff there is a permutation of the *n* vertices such that for each *i* there is an edge from vertex in position *i* to vertex in position (i + 1)

How do we express permutations?

Chandra Chekuri (UIUC)	CS/ECE 374	20	Spring 2023	20 / 35

Reduction continued

Define variable x(u, i) if vertex u in position i in the permutation. Total of n^2 variables where n = |V|.

Constraints?

 For each u, exactly one of x(u, 1), x(u, 2), ..., x(u, n) should be true

Reduction continued

Define variable x(u, i) if vertex u in position i in the permutation. Total of n^2 variables where n = |V|.

Constraints?

- For each *u*, exactly one of *x*(*u*, 1), *x*(*u*, 2), ..., *x*(*u*, *n*) should be true
 - $\bigvee_{i=1}^{n} x(u, i)$ to ensure that x(u, i) is 1 for at least one *i*
 - For $i \neq j$ we add constraint $\neg x(u, i) \lor \neg x(u, j)$ to ensure that we cannot choose both to be 1 for any pair.
 - For each \boldsymbol{u} we have a total of $(1 + \boldsymbol{n}(\boldsymbol{n} 1)/2)$ constraints. Total of $\boldsymbol{n}(1 + \boldsymbol{n}(\boldsymbol{n} - 1)/2)$ over all vertices.
- x(u, i) and x(v, i + 1) implies edge (u, v) in E(G)

Reduction continued

Define variable x(u, i) if vertex u in position i in the permutation. Total of n^2 variables where n = |V|.

Constraints?

- For each u, exactly one of x(u, 1), x(u, 2), ..., x(u, n) should be true
 - $\bigvee_{i=1}^{n} x(u, i)$ to ensure that x(u, i) is 1 for at least one i
 - For $i \neq j$ we add constraint $\neg x(u, i) \lor \neg x(u, j)$ to ensure that we cannot choose both to be 1 for any pair.
 - For each \boldsymbol{u} we have a total of $(1 + \boldsymbol{n}(\boldsymbol{n} 1)/2)$ constraints. Total of $\boldsymbol{n}(1 + \boldsymbol{n}(\boldsymbol{n} - 1)/2)$ over all vertices.
- x(u, i) and x(v, i + 1) implies edge (u, v) in E(G) (x(u, i) ∧ x(v, i + 1)) ⇒ z(u, v) where z(u, v) is 1 if (u, v) ∈ E otherwise 0 (z(u, v) is a constant, not a variable but to help notation). Convert implication constraint to CNF.

Given graph G = (V, E) and integer k, does G have a vertex cover of size at most k?

Recall $S \subseteq V$ is a vertex cover if each edge (u, v) is covered by S, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables?

Given graph G = (V, E) and integer k, does G have a vertex cover of size at most k?

Recall $S \subseteq V$ is a vertex cover if each edge (u, v) is covered by S, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables? $x_u, u \in V$ to indicate whether we choose u

Given graph G = (V, E) and integer k, does G have a vertex cover of size at most k?

Recall $S \subseteq V$ is a vertex cover if each edge (u, v) is covered by S, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables? $x_u, u \in V$ to indicate whether we choose u

Constraints?

Given graph G = (V, E) and integer k, does G have a vertex cover of size at most k?

Recall $S \subseteq V$ is a vertex cover if each edge (u, v) is covered by S, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables? $x_u, u \in V$ to indicate whether we choose u

Constraints?

For each edge (u, v) ∈ E a constraint (x_u ∨ x_v). Total of |E| constraints.

Given graph G = (V, E) and integer k, does G have a vertex cover of size at most k?

Recall $S \subseteq V$ is a vertex cover if each edge (u, v) is covered by S, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables? $x_u, u \in V$ to indicate whether we choose u

Constraints?

- For each edge (u, v) ∈ E a constraint (x_u ∨ x_v). Total of |E| constraints.
- $\sum_{u \in V} x_u \leq k$. Not a boolean constraint! How?

Expressing $\sum_{u \in V} x_u \leq k$ as a *circuit*.

- Given inputs x_u, u ∈ V can create an addition circuit that outputs the sum ∑_u x_u as a ⌈log n⌉ bit binary number
- Given two *r*-bit binary inputs *y*₁, *y*₂, ..., *y_r* and *z*₁, *z*₂, ..., *z_r* one can develop a boolean circuit to compare which one is greater
- Hence circuit to do ∑_u x_u and compare output to input integer k written in binary

Expressing $\sum_{u \in V} x_u \leq k$ as a *circuit*.

- Given inputs x_u, u ∈ V can create an addition circuit that outputs the sum ∑_u x_u as a ⌈log n⌉ bit binary number
- Given two *r*-bit binary inputs *y*₁, *y*₂, ..., *y_r* and *z*₁, *z*₂, ..., *z_r* one can develop a boolean circuit to compare which one is greater
- Hence circuit to do ∑_u x_u and compare output to input integer k written in binary

Combine with the constraints to cover edges to obtain a CSAT instance with input variables $x_u, u \in V$

We saw that **3-Color** efficiently reduced to **4-Color**.

We saw that **3-Color** efficiently reduced to **4-Color**. What was the reduction?

We saw that **3-Color** efficiently reduced to **4-Color**. What was the reduction? Given G output graph H where H is obtained by adding a new vertex v to G and connecting it by edges to all the original vertices of G. Argue that G is 3-colorable iff H is 4-colorable.

Question: Is there a reduction from 4-Color to 3-Color?

We saw that **3-Color** efficiently reduced to **4-Color**. What was the reduction? Given G output graph H where H is obtained by adding a new vertex v to G and connecting it by edges to all the original vertices of G. Argue that G is 3-colorable iff H is 4-colorable.

Question: Is there a reduction from 4-Color to 3-Color?

Yes! 4-Color is in *NP* and 4-Color reduces to SAT SAT reduces to 3-SAT and 3-SAT reduces to 3-Color and hence ...

We saw that **3-Color** efficiently reduced to **4-Color**. What was the reduction? Given G output graph H where H is obtained by adding a new vertex v to G and connecting it by edges to all the original vertices of G. Argue that G is 3-colorable iff H is 4-colorable.

Question: Is there a reduction from 4-Color to 3-Color?

Yes! 4-Color is in *NP* and 4-Color reduces to SAT SAT reduces to 3-SAT and 3-SAT reduces to 3-Color and hence ...

Exercise: Give an explicit reduction from 4-Color to SAT

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

How did they prove it? And why **SAT** or **CSAT**?

Proof is in retrospect simple.

- Fix any non-deterministic TM M and string w
- Does *M* accept *w* in *p*(|*w*|) steps where *p*() is some fixed polynomial?
- Can express computation of *M* on *w* using a polynomial sized circuit (or CNF formula) due to expressive power of constraints and local computation of TMs
- Thus, can reduce an *arbitrary* NP problem (since it corresponds to some non-deterministic poly-time TM M) to SAT

Chandra Chekuri (UIUC)

25

Mathematical Programming

SAT, **CSAT** are boolean constraint satisfaction problems.

Other frameworks: constraints involving linear inequalities, convex functions, polynomials etc

Useful to know: Integer Linear Programming (ILP), Linear Programming (LP), Mixed Integer Linear Programming (MIP), Convex Programming

Commercial packages available. ILP, MIP are NP-Hard but many small to medium problems can be solved in practice. Powerful and expressive constraint involving numbers, not just booleans.

Linear Programming

Problem

Real variables x_1, x_2, \ldots, x_n . Solve

maximize/minimize subject to

$$\sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \text{ for } i = 1 \dots p$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \text{ for } i = p + 1 \dots q$$

$$\sum_{j=1}^{n} a_{ij} x_j \geq b_i \text{ for } i = q + 1 \dots m$$

Input is matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$, column vector $b = (b_i) \in \mathbb{R}^m$, and row vector $c = (c_j) \in \mathbb{R}^n$

Constraints are linear equations and inequalities. Objective is a linear function

27

Integer Linear Programming

Problem

Integer variables x_1, x_2, \ldots, x_n . Solve

maximize/minimize subject to

$$\begin{array}{ll}\sum_{j=1}^{n}c_{j}x_{j}\\\sum_{j=1}^{n}a_{ij}x_{j}\leq b_{i} \quad \text{for } i=1\ldots p\\\sum_{j=1}^{n}a_{ij}x_{j}=b_{i} \quad \text{for } i=p+1\ldots q\\\sum_{j=1}^{n}a_{ij}x_{j}\geq b_{i} \quad \text{for } i=q+1\ldots n\\x_{i}\in\mathbb{Z} \quad \qquad \text{for } i=1 \text{ to } d\end{array}$$

Input is matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$, column vector $b = (b_i) \in \mathbb{R}^m$, and row vector $c = (c_j) \in \mathbb{R}^n$

Constraints are linear equations and inequalities. Objective is a linear function but variables need to take *integer* values

Chandra Chekuri (UIUC)

Convex Programming

Problem

Real variables x_1, x_2, \ldots, x_n . $x \in \mathbb{R}^n$ Solve

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) \leq b_i \quad \text{for } i = 1 \dots m \end{array}$

 f, g_1, g_2, \ldots, g_m are convex functions

Mathematical Programming

- LP is a specical case of Convex Programming
- LP can be solved in polynomial time
- Convex programs can be solved arbitrarily well in polynomial time (exact solution is tricky because of irrational solutions)
- ILP and MIP are NP-Hard (decision versions are NP-Complete).

Mathematical Programming

- LP is a specical case of Convex Programming
- LP can be solved in polynomial time
- Convex programs can be solved arbitrarily well in polynomial time (exact solution is tricky because of irrational solutions)
- ILP and MIP are NP-Hard (decision versions are NP-Complete).

Why is convex programming solvable?

- For convex programs, local optimum is a global optimum!
- Local optimum can be found by local search! Gradient descent! Even for non-convex programs
- Gradient descent doesn't give a poly-time algorithm (gives a pseudo-polytime algorithm) but shows why efficiency is possible.

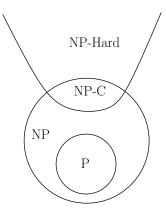
Interplay of Discrete and Continuous Optimization

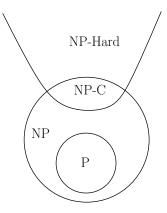
Both are fundamental and important and interplay has lot of impact!

- Machine learning: (deep) learning uses continuous optimization to train neural networks for classification and other discrete tasks
- Combinatorial optimization: use LP/SDP and other convex programming methods to solve combinatorial problems
- Scientific and numerical computing
- Statistics

• . . .

Pictorial View





Possible scenarios:

- $\bullet P = NP.$
- $\bigcirc P \neq NP$

Possible scenarios:

- $\bullet P = NP.$
- $\mathbf{O} \ \mathbf{P} \neq \mathbf{NP}$

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

Possible scenarios:

- $\bullet P = NP.$
- $\mathbf{O} \ \mathbf{P} \neq \mathbf{NP}$

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

Theorem (Ladner)

If $P \neq NP$ then there is a problem/language $X \in NP \setminus P$ such that X is not NP-Complete.

In fact a hierarcy of problems. However, no *natural* candidate.

The Big Picture

