CS/ECE 374: Algorithms \& Models of Computation

More on SAT
 Lecture 25
 April 27, 2023

Part I

Circuit SAT

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0,1 or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0,1 or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0,1 or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1 ?

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1 ?

Claim

CSAT is in NP.

(1) Certificate: Assignment to input variables.
(2) Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.
Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem

SAT $\leq_{p} 3$ SAT \leq_{p} CSAT.

Theorem
CSAT \leq_{p} SAT $\leq_{p} 3$ SAT.

Converting a CNF formula into a Circuit

Given 3CNF formulat $\boldsymbol{\varphi}$ with \boldsymbol{n} variables and \boldsymbol{m} clauses, create a Circuit C.

- Inputs to C are the n boolean variables $x_{1}, x_{2}, \ldots, x_{n}$
- Use NOT gate to generate literal $\neg x_{i}$ for each variable x_{i}
- For each clause ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

Example

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Converting a circuit into a CNF formula

(A) Input circuit

(B) Label the nodes.

Converting a circuit into a CNF formula

(B) Label the nodes.

(C) Introduce var for each node.

Converting a circuit into a CNF formula

$x_{k} \quad$ (Demand a sat' assignment!)

$$
x_{j}=x_{g} \wedge x_{h}
$$

$$
x_{g}=x_{b} \vee x_{c}
$$

(C) Introduce var for each node.

$$
x_{k}=x_{i} \wedge x_{j}
$$

$$
x_{i}=\neg x_{f}
$$

$$
x_{h}=x_{d} \vee x_{e}
$$

$$
x_{f}=x_{a} \wedge x_{b}
$$

$$
x_{d}=0
$$

$$
x_{a}=1
$$

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Converting a circuit into a CNF formula

CNF

x_{k}	x_{k}
$x_{k}=x_{i} \wedge x_{j}$	$\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right)$
$x_{j}=x_{g} \wedge x_{h}$	$\left(\neg x_{j} \vee x_{g}\right) \wedge\left(\neg x_{j} \vee x_{\boldsymbol{h}}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right)$
$x_{i}=\neg x_{f}$	$\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee \neg x_{f}\right)$
$x_{h}=x_{d} \vee x_{e}$	$\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{\boldsymbol{h}} \vee \neg x_{e}\right) \wedge\left(\neg x_{\boldsymbol{h}} \vee x_{d} \vee x_{e}\right)$
$x_{g}=x_{b} \vee x_{c}$	$\left(x_{g} \vee \neg x_{b}\right) \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right)$
$x_{f}=x_{a} \wedge x_{b}$	$\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right)$
$x_{d}=0$	$\neg x_{d}$
$x_{a}=1$	x_{a}

Converting a circuit into a CNF formula

CNF

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: CSAT \leq_{P} SAT

(1) For each gate (vertex) v in the circuit, create a variable \boldsymbol{x}_{v}
(2) Case $\neg: ~ \boldsymbol{v}$ is labeled \neg and has one incoming edge from \boldsymbol{u} (so $\left.x_{v}=\neg x_{u}\right)$. In SAT formula generate, add clauses $\left(x_{u} \vee x_{v}\right)$, $\left(\neg x_{u} \vee \neg x_{v}\right)$. Observe that

$$
x_{v}=\neg x_{u} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{u} \vee x_{v}\right) \\
& \left(\neg x_{u} \vee \neg x_{v}\right)
\end{aligned} \text { both true. }
$$

Reduction: CSAT \leq_{P} SAT

(1) Case \vee : So $x_{v}=x_{u} \vee x_{w}$. In SAT formula generated, add clauses $\left(x_{v} \vee \neg x_{u}\right),\left(x_{v} \vee \neg x_{w}\right)$, and $\left(\neg x_{v} \vee x_{u} \vee x_{w}\right)$. Again, observe that

$$
\left(x_{v}=x_{u} \vee x_{w}\right) \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{v} \vee \neg x_{u}\right), \\
& \left(x_{v} \vee \neg x_{w}\right), \\
& \left(\neg x_{v} \vee x_{u} \vee x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{P} SAT

(1) Case \wedge : So $x_{v}=x_{u} \wedge x_{w}$. In SAT formula generated, add clauses $\left(\neg x_{v} \vee x_{u}\right)$, $\left(\neg x_{v} \vee x_{w}\right)$, and $\left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)$. Again observe that

$$
x_{v}=x_{u} \wedge x_{w} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(\neg x_{v} \vee x_{u}\right), \\
& \left(\neg x_{v} \vee x_{w}\right), \\
& \left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{P} SAT

(1) If v is an input gate with a fixed value then we do the following. If $x_{v}=1$ add clause x_{v}. If $x_{v}=0$ add clause $\neg x_{v}$
(2) Add the clause x_{v} where v is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_{C} is satisfiable
\Rightarrow Consider a satisfying assignment a for C
(1) Find values of all gates in \boldsymbol{C} under \boldsymbol{a}
(2) Give value of gate \boldsymbol{v} to variable $\boldsymbol{x}_{\boldsymbol{v}}$; call this assignment \boldsymbol{a}^{\prime}
(3) a^{\prime} satisfies φ_{C} (exercise)
\Leftarrow Consider a satisfying assignment \boldsymbol{a} for φ_{C}
(1) Let \boldsymbol{a}^{\prime} be the restriction of \boldsymbol{a} to only the input variables
(2) Value of gate \boldsymbol{v} under \boldsymbol{a}^{\prime} is the same as value of $\boldsymbol{x}_{\boldsymbol{v}}$ in \boldsymbol{a}
(3) Thus, \boldsymbol{a}^{\prime} satisfies C

Part II

Reducing Problems to SAT and Circuit SAT

Power of SAT and CSAT

SAT and CSAT are meta-problems
Allow us to express/model problem using constraints. In essense they allow programming with constraints of certain restricted type.

Goal: examples to drive home the point

Reduce Directed Hamilton Path to SAT

Given directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$, does it have a Hamilton path?
Given G obtain CNF formula φ_{G} such that G has a Hamilton Path iff φ_{G} is satisfiable

Reduce Directed Hamilton Path to SAT

Given directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$, does it have a Hamilton path?
Given G obtain CNF formula φ_{G} such that G has a Hamilton Path iff φ_{G} is satisfiable

Alternative view: Program/express using constraints

- What are variables?
- What are the constraints?

Reduce Directed Hamilton Path to SAT

Given directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$, does it have a Hamilton path?
Given G obtain CNF formula φ_{G} such that G has a Hamilton Path iff φ_{G} is satisfiable

Alternative view: Program/express using constraints

- What are variables?
- What are the constraints?

One approach: G has a Hamilton path iff there is a permutation of the \boldsymbol{n} vertices such that for each \boldsymbol{i} there is an edge from vertex in position \boldsymbol{i} to vertex in position $(\boldsymbol{i}+1)$

How do we express permutations?

Reduction continued

Define variable $\boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i})$ if vertex \boldsymbol{u} in position \boldsymbol{i} in the permutation. Total of \boldsymbol{n}^{2} variables where $\boldsymbol{n}=|\boldsymbol{V}|$.

Constraints?

- For each \boldsymbol{u}, exactly one of $\boldsymbol{x}(\boldsymbol{u}, 1), \boldsymbol{x}(\boldsymbol{u}, 2), \ldots, \boldsymbol{x}(\boldsymbol{u}, \boldsymbol{n})$ should be true

Reduction continued

Define variable $\boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i})$ if vertex \boldsymbol{u} in position \boldsymbol{i} in the permutation. Total of \boldsymbol{n}^{2} variables where $\boldsymbol{n}=|\boldsymbol{V}|$.

Constraints?

- For each \boldsymbol{u}, exactly one of $\boldsymbol{x}(\boldsymbol{u}, 1), \boldsymbol{x}(\boldsymbol{u}, 2), \ldots, \boldsymbol{x}(\boldsymbol{u}, \boldsymbol{n})$ should be true
- $\bigvee_{\boldsymbol{i}=1}^{\boldsymbol{n}} \boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i})$ to ensure that $\boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i})$ is 1 for at least one \boldsymbol{i}
- For $\boldsymbol{i} \neq \boldsymbol{j}$ we add constraint $\neg \boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i}) \vee \neg \boldsymbol{x}(\boldsymbol{u}, \boldsymbol{j})$ to ensure that we cannot choose both to be 1 for any pair.
- For each \boldsymbol{u} we have a total of $(1+\boldsymbol{n}(\boldsymbol{n}-1) / 2)$ constraints. Total of $\boldsymbol{n}(1+\boldsymbol{n}(\boldsymbol{n}-1) / 2)$ over all vertices.
- $\boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i})$ and $\boldsymbol{x}(\boldsymbol{v}, \boldsymbol{i}+1)$ implies edge $(\boldsymbol{u}, \boldsymbol{v})$ in $E(\boldsymbol{G})$

Reduction continued

Define variable $\boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i})$ if vertex \boldsymbol{u} in position \boldsymbol{i} in the permutation. Total of \boldsymbol{n}^{2} variables where $\boldsymbol{n}=|\boldsymbol{V}|$.

Constraints?

- For each \boldsymbol{u}, exactly one of $\boldsymbol{x}(\boldsymbol{u}, 1), \boldsymbol{x}(\boldsymbol{u}, 2), \ldots, \boldsymbol{x}(\boldsymbol{u}, \boldsymbol{n})$ should be true
- $\bigvee_{\boldsymbol{i}=1}^{\boldsymbol{n}} \boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i})$ to ensure that $\boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i})$ is 1 for at least one \boldsymbol{i}
- For $\boldsymbol{i} \neq \boldsymbol{j}$ we add constraint $\neg \boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i}) \vee \neg \boldsymbol{x}(\boldsymbol{u}, \boldsymbol{j})$ to ensure that we cannot choose both to be 1 for any pair.
- For each \boldsymbol{u} we have a total of $(1+\boldsymbol{n}(\boldsymbol{n}-1) / 2)$ constraints. Total of $\boldsymbol{n}(1+\boldsymbol{n}(\boldsymbol{n}-1) / 2)$ over all vertices.
- $\boldsymbol{x}(\boldsymbol{u}, \boldsymbol{i})$ and $\boldsymbol{x}(\boldsymbol{v}, \boldsymbol{i}+1)$ implies edge $(\boldsymbol{u}, \boldsymbol{v})$ in $E(\boldsymbol{G})$
$(x(u, i) \wedge x(v, i+1)) \Rightarrow z(u, v)$ where $z(u, v)$ is 1 if
$(u, v) \in E$ otherwise $0(z(u, v)$ is a constant, not a variable but to help notation). Convert implication constraint to CNF.

Vertex Cover to CSAT

Given graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and integer \boldsymbol{k}, does \boldsymbol{G} have a vertex cover of size at most k ?

Recall $S \subseteq \boldsymbol{V}$ is a vertex cover if each edge $(\boldsymbol{u}, \boldsymbol{v})$ is covered by S, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables?

Vertex Cover to CSAT

Given graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and integer \boldsymbol{k}, does \boldsymbol{G} have a vertex cover of size at most k ?

Recall $S \subseteq \boldsymbol{V}$ is a vertex cover if each edge $(\boldsymbol{u}, \boldsymbol{v})$ is covered by \boldsymbol{S}, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables?
$x_{u}, u \in V$ to indicate whether we choose u

Vertex Cover to CSAT

Given graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and integer \boldsymbol{k}, does \boldsymbol{G} have a vertex cover of size at most k ?

Recall $S \subseteq \boldsymbol{V}$ is a vertex cover if each edge $(\boldsymbol{u}, \boldsymbol{v})$ is covered by \boldsymbol{S}, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables?
$x_{u}, u \in V$ to indicate whether we choose u
Constraints?

Vertex Cover to CSAT

Given graph $G=(\boldsymbol{V}, \boldsymbol{E})$ and integer \boldsymbol{k}, does \boldsymbol{G} have a vertex cover of size at most k ?

Recall $S \subseteq \boldsymbol{V}$ is a vertex cover if each edge $(\boldsymbol{u}, \boldsymbol{v})$ is covered by \boldsymbol{S}, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables?
$x_{u}, u \in V$ to indicate whether we choose u
Constraints?

- For each edge $(u, v) \in E$ a constraint $\left(x_{u} \vee x_{v}\right)$. Total of $|E|$ constraints.

Vertex Cover to CSAT

Given graph $G=(\boldsymbol{V}, \boldsymbol{E})$ and integer \boldsymbol{k}, does \boldsymbol{G} have a vertex cover of size at most k ?

Recall $S \subseteq \boldsymbol{V}$ is a vertex cover if each edge $(\boldsymbol{u}, \boldsymbol{v})$ is covered by S, that means $u \in S$ or $v \in S$.

How do we reduce to CSAT/SAT? What are the variables?
$x_{u}, u \in V$ to indicate whether we choose u
Constraints?

- For each edge $(u, v) \in E$ a constraint $\left(x_{u} \vee x_{v}\right)$. Total of $|E|$ constraints.
- $\sum_{u \in V} x_{u} \leq k$. Not a boolean constraint! How?

Vertex Cover to CSAT

Expressing $\sum_{\boldsymbol{u} \in \boldsymbol{V}} \boldsymbol{x}_{\boldsymbol{u}} \leq \boldsymbol{k}$ as a circuit.

- Given inputs $\boldsymbol{x}_{\boldsymbol{u}}, \boldsymbol{u} \in \boldsymbol{V}$ can create an addition circuit that outputs the sum $\sum_{\boldsymbol{u}} x_{\boldsymbol{u}}$ as a $\lceil\log n\rceil$ bit binary number
- Given two r-bit binary inputs $y_{1}, y_{2}, \ldots, y_{r}$ and $z_{1}, z_{2}, \ldots, z_{r}$ one can develop a boolean circuit to compare which one is greater
- Hence circuit to do $\sum_{\boldsymbol{u}} \boldsymbol{x}_{\boldsymbol{u}}$ and compare output to input integer k written in binary

Vertex Cover to CSAT

Expressing $\sum_{\boldsymbol{u} \in \boldsymbol{V}} \boldsymbol{x}_{\boldsymbol{u}} \leq \boldsymbol{k}$ as a circuit.

- Given inputs $\boldsymbol{x}_{\boldsymbol{u}}, \boldsymbol{u} \in \boldsymbol{V}$ can create an addition circuit that outputs the sum $\sum_{\boldsymbol{u}} x_{\boldsymbol{u}}$ as a $\lceil\log n\rceil$ bit binary number
- Given two r-bit binary inputs $y_{1}, y_{2}, \ldots, y_{r}$ and $z_{1}, z_{2}, \ldots, z_{r}$ one can develop a boolean circuit to compare which one is greater
- Hence circuit to do $\sum_{\boldsymbol{u}} \boldsymbol{x}_{\boldsymbol{u}}$ and compare output to input integer k written in binary

Combine with the constraints to cover edges to obtain a CSAT instance with input variables $\boldsymbol{x}_{\boldsymbol{u}}, \boldsymbol{u} \in V$

Magic of Reductions

We saw that 3-Color efficiently reduced to 4-Color.

Magic of Reductions

We saw that 3-Color efficiently reduced to 4-Color. What was the reduction?

Magic of Reductions

We saw that 3-Color efficiently reduced to 4-Color. What was the reduction? Given \boldsymbol{G} output graph \boldsymbol{H} where \boldsymbol{H} is obtained by adding a new vertex v to G and connecting it by edges to all the original vertices of \boldsymbol{G}. Argue that \boldsymbol{G} is 3-colorable iff \boldsymbol{H} is 4-colorable.

Question: Is there a reduction from 4-Color to 3-Color?

Magic of Reductions

We saw that 3-Color efficiently reduced to 4-Color. What was the reduction? Given \boldsymbol{G} output graph \boldsymbol{H} where \boldsymbol{H} is obtained by adding a new vertex v to G and connecting it by edges to all the original vertices of \boldsymbol{G}. Argue that G is 3-colorable iff H is 4-colorable.

Question: Is there a reduction from 4-Color to 3-Color?

Yes! 4-Color is in NP and 4-Color reduces to SAT SAT reduces to 3-SAT and 3-SAT reduces to 3-Color and hence ...

Magic of Reductions

We saw that 3-Color efficiently reduced to 4-Color. What was the reduction? Given \boldsymbol{G} output graph \boldsymbol{H} where \boldsymbol{H} is obtained by adding a new vertex v to G and connecting it by edges to all the original vertices of \boldsymbol{G}. Argue that \boldsymbol{G} is 3-colorable iff \boldsymbol{H} is 4-colorable.

Question: Is there a reduction from 4-Color to 3-Color?

Yes! 4-Color is in NP and 4-Color reduces to SAT SAT reduces to 3-SAT and 3-SAT reduces to 3-Color and hence ...

Exercise: Give an explicit reduction from 4-Color to SAT

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

How did they prove it? And why SAT or CSAT?
Proof is in retrospect simple.

- Fix any non-deterministic TM M and string w
- Does M accept \boldsymbol{w} in $\boldsymbol{p}(|\boldsymbol{w}|)$ steps where $\boldsymbol{p}()$ is some fixed polynomial?
- Can express computation of M on w using a polynomial sized circuit (or CNF formula) due to expressive power of constraints and local computation of TMs
- Thus, can reduce an arbitrary NP problem (since it corresponds to some non-deterministic poly-time TM M) to SAT

Mathematical Programming

SAT, CSAT are boolean constraint satisfaction problems.
Other frameworks: constraints involving linear inequalities, convex functions, polynomials etc

Useful to know: Integer Linear Programming (ILP), Linear Programming (LP), Mixed Integer Linear Programming (MIP), Convex Programming

Commercial packages available. ILP, MIP are NP-Hard but many small to medium problems can be solved in practice. Powerful and expressive constraint involving numbers, not just booleans.

Linear Programming

Problem

Real variables $x_{1}, x_{2}, \ldots, x_{n}$. Solve

$$
\begin{array}{ll}
\text { maximize/minimize } & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1 \ldots p \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad \text { for } i=p+1 \ldots \boldsymbol{q} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \quad \text { for } i=q+1 \ldots m
\end{array}
$$

Input is matrix $\boldsymbol{A}=\left(a_{i j}\right) \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$, column vector $\boldsymbol{b}=\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \in \mathbb{R}^{\boldsymbol{m}}$, and row vector $\boldsymbol{c}=\left(\boldsymbol{c}_{\boldsymbol{j}}\right) \in \mathbb{R}^{\boldsymbol{n}}$

Constraints are linear equations and inequalities. Objective is a linear function

Integer Linear Programming

Problem

Integer variables $x_{1}, x_{2}, \ldots, x_{n}$. Solve

$$
\begin{array}{ll}
\operatorname{maximize/minimize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \text { for } \boldsymbol{i}=1 \ldots \boldsymbol{p} \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \text { for } \boldsymbol{i}=\boldsymbol{p}+1 \ldots \boldsymbol{q} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \text { for } \boldsymbol{i}=\boldsymbol{q}+1 \ldots \boldsymbol{n} \\
& x_{i} \in \mathbb{Z}
\end{array} \text { for } \boldsymbol{i}=1 \text { to } \boldsymbol{d}
$$

Input is matrix $\boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right) \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$, column vector $\boldsymbol{b}=\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \in \mathbb{R}^{\boldsymbol{m}}$, and row vector $\boldsymbol{c}=\left(\boldsymbol{c}_{j}\right) \in \mathbb{R}^{\boldsymbol{n}}$

Constraints are linear equations and inequalities. Objective is a linear function but variables need to take integer values

Convex Programming

Problem

Real variables $x_{1}, x_{2}, \ldots, x_{n} . x \in \mathbb{R}^{\boldsymbol{n}}$ Solve

$$
\operatorname{minimize} \quad f(x)
$$

subject to $g_{i}(x) \leq b_{i}$ for $\boldsymbol{i}=1 \ldots m$
$\boldsymbol{f}, \boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \ldots, \boldsymbol{g}_{\boldsymbol{m}}$ are convex functions

Mathematical Programming

- LP is a specical case of Convex Programming
- LP can be solved in polynomial time
- Convex programs can be solved arbitrarily well in polynomial time (exact solution is tricky because of irrational solutions)
- ILP and MIP are NP-Hard (decision versions are NP-Complete).

Mathematical Programming

- LP is a specical case of Convex Programming
- LP can be solved in polynomial time
- Convex programs can be solved arbitrarily well in polynomial time (exact solution is tricky because of irrational solutions)
- ILP and MIP are NP-Hard (decision versions are NP-Complete).

Why is convex programming solvable?

- For convex programs, local optimum is a global optimum!
- Local optimum can be found by local search! Gradient descent! Even for non-convex programs
- Gradient descent doesn't give a poly-time algorithm (gives a pseudo-polytime algorithm) but shows why efficiency is possible.

Interplay of Discrete and Continuous Optimization

Both are fundamental and important and interplay has lot of impact!

- Machine learning: (deep) learning uses continuous optimization to train neural networks for classification and other discrete tasks
- Combinatorial optimization: use LP/SDP and other convex programming methods to solve combinatorial problems
- Scientific and numerical computing
- Statistics

Pictorial View

P and NP

P and NP

Possible scenarios:

(1) $\mathrm{P}=\mathrm{NP}$.
(2) $P \neq N P$

P and NP

Possible scenarios:
(1) $\mathrm{P}=\mathrm{NP}$.
(2) $P \neq N P$

Question: Suppose $\mathbf{P} \neq \mathbf{N P}$. Is every problem in NP $\backslash \mathbf{P}$ also NP-Complete?

P and NP

Possible scenarios:
(1) $P=N P$.
(2) $P \neq N P$

Question: Suppose $P \neq N P$. Is every problem in NP $\backslash P$ also NP-Complete?

Theorem (Ladner)
 If $\mathrm{P} \neq \mathrm{NP}$ then there is a problem/language $\boldsymbol{X} \in \mathrm{NP} \backslash \mathrm{P}$ such that X is not NP-Complete.

In fact a hierarcy of problems. However, no natural candidate.

The Big Picture

