
CS/ECE 374: Algorithms & Models of
Computation

Intractability and Reductions
Lecture 22
April 18, 2023

Chandra Chekuri (UIUC) CS/ECE 374 1 Spring 2023 1 / 50

Course Outline

Part I: models of computation (reg exps, DFA/NFA, CFGs, TMs)

Part II: (efficient) algorithm design

Part III: intractability via reductions

Undecidablity: problems that have no algorithms
NP-Completeness: problems unlikely to have efficient algorithms
unless P = NP

Chandra Chekuri (UIUC) CS/ECE 374 2 Spring 2023 2 / 50

Part I

Intractability and Lower Bounds

Chandra Chekuri (UIUC) CS/ECE 374 3 Spring 2023 3 / 50

Turing Machines and Church-Turing Thesis

Turing defined TMs as a machine model of computation

Church-Turing thesis: any function that is computable can be
computed by TMs

Efficient Church-Turing thesis: any function that is computable
can be computed by TMs with only a polynomial slow-down

Chandra Chekuri (UIUC) CS/ECE 374 4 Spring 2023 4 / 50

Computability and Complexity Theory

What functions can and cannot be computed by TMs?

What functions/problems can and cannot be solved efficiently?

Why?

Foundational questions about computation

Pragmatic: Can we solve our problem or not?

Are we not being clever enough to find an efficient algorithm or
should we stop because there isn’t one or likely to be one?

Chandra Chekuri (UIUC) CS/ECE 374 5 Spring 2023 5 / 50

Lower Bounds and Impossibility Results

Prove that given problem cannot be solved (efficiently) on a TM.
Informally we say that the problem is “hard”.

Generally quite difficult: algorithms can be very non-trivial and clever.

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023 6 / 50

Reductions to Prove Intractability

A general methodology to prove impossibility results.

Start with some known hard problem X
Reduce X to your favorite problem Y

If Y can be solved then so can X ⇒ Y is also hard

Caveat: In algorithms we reduce new problem to known solved one!

Who gives us the initial hard problem?

Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who
establish hardness of a fundamental problem

Assume some core problem is hard because we haven’t been able
to solve it for a long time. This leads to conditional results

Reduction is a powerful and unifying tool in Computer Science

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7 / 50

Reductions to Prove Intractability

A general methodology to prove impossibility results.

Start with some known hard problem X
Reduce X to your favorite problem Y

If Y can be solved then so can X ⇒ Y is also hard

Caveat: In algorithms we reduce new problem to known solved one!

Who gives us the initial hard problem?

Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who
establish hardness of a fundamental problem

Assume some core problem is hard because we haven’t been able
to solve it for a long time. This leads to conditional results

Reduction is a powerful and unifying tool in Computer Science

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7 / 50

Reductions to Prove Intractability

A general methodology to prove impossibility results.

Start with some known hard problem X
Reduce X to your favorite problem Y

If Y can be solved then so can X ⇒ Y is also hard

Caveat: In algorithms we reduce new problem to known solved one!

Who gives us the initial hard problem?

Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who
establish hardness of a fundamental problem

Assume some core problem is hard because we haven’t been able
to solve it for a long time. This leads to conditional results

Reduction is a powerful and unifying tool in Computer Science

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7 / 50

Reductions to Prove Intractability

A general methodology to prove impossibility results.

Start with some known hard problem X
Reduce X to your favorite problem Y

If Y can be solved then so can X ⇒ Y is also hard

Caveat: In algorithms we reduce new problem to known solved one!

Who gives us the initial hard problem?

Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who
establish hardness of a fundamental problem

Assume some core problem is hard because we haven’t been able
to solve it for a long time. This leads to conditional results

Reduction is a powerful and unifying tool in Computer Science
Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7 / 50

Decision Problems, Languages, Terminology

When proving hardness we limit attention to decision problems

A decision problem Π is a collection of instances (strings)

For each instance I of Π, answer is YES or NO

Equivalently: boolean function fΠ : Σ∗ → {0, 1} where
f (I) = 1 if I is a YES instance, f (I) = 0 if NO instance

Equivalently: language LΠ = {I | I is a YES instance}

Notation about encoding: distinguish I from encoding ⟨I⟩
n is an integer. ⟨n⟩ is the encoding of n in some format (could
be unary, binary, decimal etc)

G is a graph. ⟨G⟩ is the encoding of G in some format

M is a TM. ⟨M⟩ is the encoding of TM as a string according to
some fixed convention

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8 / 50

Decision Problems, Languages, Terminology

When proving hardness we limit attention to decision problems

A decision problem Π is a collection of instances (strings)

For each instance I of Π, answer is YES or NO

Equivalently: boolean function fΠ : Σ∗ → {0, 1} where
f (I) = 1 if I is a YES instance, f (I) = 0 if NO instance

Equivalently: language LΠ = {I | I is a YES instance}

Notation about encoding: distinguish I from encoding ⟨I⟩
n is an integer. ⟨n⟩ is the encoding of n in some format (could
be unary, binary, decimal etc)

G is a graph. ⟨G⟩ is the encoding of G in some format

M is a TM. ⟨M⟩ is the encoding of TM as a string according to
some fixed convention

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8 / 50

Examples

Given directed graph G , is it strongly connected? ⟨G⟩ is a YES
instance if it is, otherwise NO instance

Given number n, is it a prime number?
LPRIMES = {⟨n⟩ | n is prime}
Given number n is it a composite number?
LCOMPOSITE = {⟨n⟩ | n is a composite}
Given G = (V ,E), s, t,B is the shortest path distance from s
to t at most B? Instance is ⟨G , s, t,B⟩

Chandra Chekuri (UIUC) CS/ECE 374 9 Spring 2023 9 / 50

Part II

(Polynomial Time) Reductions

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10 / 50

Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:

1 An algorithm . . .

2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LY ⇐⇒ w ′ ∈ LX

(Actually, this is only one type of reduction, but this is the one we
will use for hardness.) There are other kinds of reductions.

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 50

Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:

1 An algorithm . . .

2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LY ⇐⇒ w ′ ∈ LX

(Actually, this is only one type of reduction, but this is the one we
will use for hardness.) There are other kinds of reductions.

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 50

Reductions for decision problems/languages

For decision problems X ,Y , a reduction from X to Y is:

1 An algorithm . . .

2 Input: IX , an instance of X .

3 Output: IY an instance of Y .

4 Such that:
IY is YES instance of Y ⇐⇒ IX is YES instance of X

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023 12 / 50

Reductions

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐ R(IX)
return AY (IY)

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.

Chandra Chekuri (UIUC) CS/ECE 374 13 Spring 2023 13 / 50

Reductions

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐ R(IX)
return AY (IY)

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.

Chandra Chekuri (UIUC) CS/ECE 374 13 Spring 2023 13 / 50

Reductions and running time

AY

IY
YES

NO

IX
R

AX

R(n): running time of R
Q(n): running time of AY

Question: What is running time of AX?

O(R(n) + Q(R(n))).
Why?

If IX has size n, R creates an instance IY of size at most R(n)
AY ’s time on IY is by definition at most Q(|IY |) ≤ Q(R(n)).

Example: If R(n) = n2 and Q(n) = n1.5 then AX is O(n3)

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14 / 50

Reductions and running time

AY

IY
YES

NO

IX
R

AX

R(n): running time of R
Q(n): running time of AY

Question: What is running time of AX? O(R(n) + Q(R(n))).
Why?

If IX has size n, R creates an instance IY of size at most R(n)
AY ’s time on IY is by definition at most Q(|IY |) ≤ Q(R(n)).

Example: If R(n) = n2 and Q(n) = n1.5 then AX is O(n3)

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14 / 50

Notation and Implication of Reductions

1 If Problem X reduces to Problem Y we write X ≤ Y
2 If Problem X reduces to Problem Y where reduction R is an

efficient (polynomial-time algorithm) we write X ≤P Y .

Algorithmic implication:

Lemma

If X ≤ Y and Y has an algorithm then X has an algorithm.

If X ≤P Y and Y has a polynomial-time algorithm then X has
a polynomial-time algorithm.

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15 / 50

Notation and Implication of Reductions

1 If Problem X reduces to Problem Y we write X ≤ Y
2 If Problem X reduces to Problem Y where reduction R is an

efficient (polynomial-time algorithm) we write X ≤P Y .

Algorithmic implication:

Lemma

If X ≤ Y and Y has an algorithm then X has an algorithm.

If X ≤P Y and Y has a polynomial-time algorithm then X has
a polynomial-time algorithm.

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15 / 50

Hardness Implications of Reductions

1 Problem X reduces to Problem Y : X ≤ Y
2 Problem X efficiently reduces to Problem Y : X ≤P Y .

Hardness implication:

Lemma

If X ≤ Y and X does not have an algorithm then Y does not
have an algorithm.

If X ≤P Y and X does not have a polynomial-time algorithm
then Y does not have a polynomial-time algorithm.

Proof.

Suppose Y has an algorithm. Then X does too since X ≤ Y . But
contradicts assumption that X does not have an algorithm. Similarly
for efficient reduction.

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 / 50

Hardness Implications of Reductions

1 Problem X reduces to Problem Y : X ≤ Y
2 Problem X efficiently reduces to Problem Y : X ≤P Y .

Hardness implication:

Lemma

If X ≤ Y and X does not have an algorithm then Y does not
have an algorithm.

If X ≤P Y and X does not have a polynomial-time algorithm
then Y does not have a polynomial-time algorithm.

Proof.

Suppose Y has an algorithm. Then X does too since X ≤ Y . But
contradicts assumption that X does not have an algorithm. Similarly
for efficient reduction.

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023 16 / 50

Transitivity of Reductions

Proposition

X ≤ Y and Y ≤ Z implies that X ≤ Z .
Similarly X ≤P Y and Y ≤P Z implies X ≤P Z .

Note: X ≤ Y does not imply that Y ≤ X and hence it is very
important to know the FROM and TO in a reduction.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17 / 50

Proving Correctness of Reductions

To prove that X ≤ Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer to
IX is YES

2 typical difficult direction to prove: answer to IX is YES if
answer to IY is YES (equivalently answer to IX is NO if answer
to IY is NO).

3 To prove X ≤P Y , additionally show that A runs in
polynomial time.

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023 18 / 50

Remember, remember, remember

Algorithm design: reduce new problem X to known easy
problem Y
Hardness: reduce known hard problem X to new problem Y

Tools to remember:

Am I trying to design algorithm or prove hardness?

What do I know about some standard problems? Easy or hard?

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19 / 50

Part III

Examples of Reductions

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20 / 50

Undecidability Reductions

Theorem (Turing)

Following languages are undecidable.

LHALT = {⟨M⟩ | M halts on blank input}
LHALT ,w = {⟨M,w⟩ | M halts on input w}
Lu = {⟨M,w⟩ | M accepts w}

Used reduction from Halting to show several probles are also
undecidable.

Chandra Chekuri (UIUC) CS/ECE 374 21 Spring 2023 21 / 50

CS 125 assignment

Write a program that prints “Hello World”

main() {
print(‘‘Hello World’’)

}

Question: Can we create an autograder? No! Why?

Chandra Chekuri (UIUC) CS/ECE 374 22 Spring 2023 22 / 50

CS 125 assignment

Write a program that prints “Hello World”

main() {
print(‘‘Hello World’’)

}

Question: Can we create an autograder?

No! Why?

Chandra Chekuri (UIUC) CS/ECE 374 22 Spring 2023 22 / 50

CS 125 assignment

Write a program that prints “Hello World”

main() {
print(‘‘Hello World’’)

}

Question: Can we create an autograder? No! Why?

Chandra Chekuri (UIUC) CS/ECE 374 22 Spring 2023 22 / 50

Reducing Halting to Autograder

Halting problem: given arbitrary program foo(), does it halt?

Reduction to CS125Autograder: given foo() output foobar()

main() {
foo()

print(‘‘Hello World’’)

}
foo() {

line 1

line 2

...

}

Note: Reduction only needs to add a few lines of code to foo()

foobar() prints “Hello World” if and only if foo() halts!

If we had CS125Autograder then we can solve Halting. But
Halting is hard according to Turing. Hence ...

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23 / 50

Reducing Halting to Autograder

Halting problem: given arbitrary program foo(), does it halt?

Reduction to CS125Autograder: given foo() output foobar()

main() {
foo()

print(‘‘Hello World’’)

}
foo() {

line 1

line 2

...

}

Note: Reduction only needs to add a few lines of code to foo()

foobar() prints “Hello World” if and only if foo() halts!

If we had CS125Autograder then we can solve Halting. But
Halting is hard according to Turing. Hence ...

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23 / 50

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 / 50

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 / 50

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 / 50

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 / 50

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 / 50

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 / 50

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25 / 50

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25 / 50

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023 26 / 50

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023 26 / 50

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given ⟨G , k⟩ outputs ⟨G , k⟩ where G is the complement
of G . G has an edge (u, v) if and only if (u, v) is not an edge of G .

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023 26 / 50

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given ⟨G , k⟩ outputs ⟨G , k⟩ where G is the complement
of G . G has an edge (u, v) if and only if (u, v) is not an edge of G .

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023 26 / 50

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given ⟨G , k⟩ outputs ⟨G , k⟩ where G is the complement
of G . G has an edge (u, v) if and only if (u, v) is not an edge of G .

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023 26 / 50

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given ⟨G , k⟩ outputs ⟨G , k⟩ where G is the complement
of G . G has an edge (u, v) if and only if (u, v) is not an edge of G .

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023 26 / 50

Correctness of reduction

Lemma

G has an independent set of size k if and only if G has a clique of
size k .

Proof.

Need to prove two facts:
G has independent set of size at least k implies that G has a clique
of size at least k .
G has a clique of size at least k implies that G has an independent
set of size at least k .
Easy to see both from the fact that S ⊆ V is an independent set in
G if and only if S is a clique in G .

Chandra Chekuri (UIUC) CS/ECE 374 27 Spring 2023 27 / 50

Independent Set and Clique

Independent Set ≤P Clique. What does this mean?

1 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

2 The reduction is efficient. Hence, if we have a poly-time
algorithm for Clique, then we have a poly-time algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

Also... Clique ≤P Independent Set. Why?
Caveat: in general X ≤ Y does not mean that Y ≤ X .

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 / 50

Independent Set and Clique

Independent Set ≤P Clique. What does this mean?

1 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

2 The reduction is efficient. Hence, if we have a poly-time
algorithm for Clique, then we have a poly-time algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

Also... Clique ≤P Independent Set. Why?
Caveat: in general X ≤ Y does not mean that Y ≤ X .

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 / 50

Independent Set and Clique

Independent Set ≤P Clique. What does this mean?

1 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

2 The reduction is efficient. Hence, if we have a poly-time
algorithm for Clique, then we have a poly-time algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

Also... Clique ≤P Independent Set. Why?

Caveat: in general X ≤ Y does not mean that Y ≤ X .

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 / 50

Independent Set and Clique

Independent Set ≤P Clique. What does this mean?

1 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

2 The reduction is efficient. Hence, if we have a poly-time
algorithm for Clique, then we have a poly-time algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

Also... Clique ≤P Independent Set. Why?
Caveat: in general X ≤ Y does not mean that Y ≤ X .

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 / 50

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 / 50

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 / 50

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 / 50

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 / 50

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 / 50

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Chandra Chekuri (UIUC) CS/ECE 374 30 Spring 2023 30 / 50

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Chandra Chekuri (UIUC) CS/ECE 374 30 Spring 2023 30 / 50

Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.

(⇒) Let S be an independent set
1 Consider any edge uv ∈ E .
2 Since S is an independent set, either u ̸∈ S or v ̸∈ S .
3 Thus, either u ∈ V \ S or v ∈ V \ S .
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv .
3 =⇒ S is thus an independent set.

Chandra Chekuri (UIUC) CS/ECE 374 31 Spring 2023 31 / 50

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 Reduction: given (G , k), an instance of Independent Set ,
ouput (G , n − k) as an instance of Vertex Cover.

3 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k which proves correctness.

4 Easy to see reduction is efficient.

5 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Chandra Chekuri (UIUC) CS/ECE 374 32 Spring 2023 32 / 50

Part IV

The Satisfiability Problem
(SAT)

Chandra Chekuri (UIUC) CS/ECE 374 33 Spring 2023 33 / 50

Propositional Formulas

Definition

Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula φ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Chandra Chekuri (UIUC) CS/ECE 374 34 Spring 2023 34 / 50

Propositional Formulas

Definition

Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula φ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Chandra Chekuri (UIUC) CS/ECE 374 34 Spring 2023 34 / 50

Satisfiability

Problem: SAT

Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of
φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of
φ such that φ evaluates to true?

Chandra Chekuri (UIUC) CS/ECE 374 35 Spring 2023 35 / 50

Satisfiability
SAT

Given a CNF formula φ, is there a truth assignment to variables
such that φ evaluates to true?

Example

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take
x1, x2, . . . x5 to be all true

2 (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not
satisfiable.

3SAT

Given a 3CNF formula φ, is there a truth assignment to variables
such that φ evaluates to true?

Chandra Chekuri (UIUC) CS/ECE 374 36 Spring 2023 36 / 50

Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.

Chandra Chekuri (UIUC) CS/ECE 374 37 Spring 2023 37 / 50

SAT ≤P 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(
x ∨ y ∨ z ∨ w ∨ u

)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Chandra Chekuri (UIUC) CS/ECE 374 38 Spring 2023 38 / 50

SAT ≤P 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(
x ∨ y ∨ z ∨ w ∨ u

)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Chandra Chekuri (UIUC) CS/ECE 374 38 Spring 2023 38 / 50

3SAT ≤P SAT

1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.

Chandra Chekuri (UIUC) CS/ECE 374 39 Spring 2023 39 / 50

SAT ≤P 3SAT

Claim

SAT ≤P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ′ such that

1 φ is satisfiable iff φ′ is satisfiable.

2 φ′ can be constructed from φ in time polynomial in |φ|.

Idea: if a clause of φ is not of length 3, replace it with several
clauses of length exactly 3.

Chandra Chekuri (UIUC) CS/ECE 374 40 Spring 2023 40 / 50

SAT ≤P 3SAT

Claim

SAT ≤P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ′ such that

1 φ is satisfiable iff φ′ is satisfiable.

2 φ′ can be constructed from φ in time polynomial in |φ|.

Idea: if a clause of φ is not of length 3, replace it with several
clauses of length exactly 3.

Chandra Chekuri (UIUC) CS/ECE 374 40 Spring 2023 40 / 50

SAT ≤P 3SAT

Claim

SAT ≤P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ′ such that

1 φ is satisfiable iff φ′ is satisfiable.

2 φ′ can be constructed from φ in time polynomial in |φ|.

Idea: if a clause of φ is not of length 3, replace it with several
clauses of length exactly 3.

Chandra Chekuri (UIUC) CS/ECE 374 40 Spring 2023 40 / 50

SAT ≤P 3SAT
A clause with two literals

Suppose φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x5 ∨ x6) ∧ (x3 ∨ ¬x5)

Reduction Ideas: clause with 2 literals
1 Case clause with 2 literals: Let c = ℓ1 ∨ ℓ2. Let u be a new

variable. Consider

c ′ =
(
ℓ1 ∨ ℓ2 ∨ u

)
∧

(
ℓ1 ∨ ℓ2 ∨ ¬u

)
.

2 Suppose φ = ψ ∧ c . Then φ′ = ψ ∧ c ′ is satisfiable iff φ is
satisfiable.

Chandra Chekuri (UIUC) CS/ECE 374 41 Spring 2023 41 / 50

SAT ≤P 3SAT
A clause with a single literal

Suppose φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x5 ∨ x6) ∧ (x3)

Reduction Ideas: clause with 1 literal
1 Case clause with one literal: Let c be a clause with a single

literal (i.e., c = ℓ). Let u, v be new variables. Consider

c ′ =
(
ℓ ∨ u ∨ v

)
∧
(
ℓ ∨ u ∨ ¬v

)
∧
(
ℓ ∨ ¬u ∨ v

)
∧
(
ℓ ∨ ¬u ∨ ¬v

)
.

2 Suppose φ = ψ ∧ c . Then φ′ = ψ ∧ c ′ is satisfiable iff φ is
satisfiable.

Chandra Chekuri (UIUC) CS/ECE 374 42 Spring 2023 42 / 50

SAT ≤P 3SAT
A clause with more than 3 literals

Suppose φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x5 ∨ x6 ∨ ¬x7 ∨ x8)

Reduction Ideas: clause with more than 3 literals
1 Case clause with five literals: Let c = ℓ1 ∨ ℓ2 ∨ ℓ3 ∨ ℓ4 ∨ ℓ5.

Let u be a new variable. Consider

c ′ =
(
ℓ1 ∨ ℓ2 ∨ ℓ3 ∨ u

)
∧

(
ℓ4 ∨ ℓ5 ∨ ¬u

)
.

2 Suppose φ = ψ ∧ c . Then φ′ = ψ ∧ c ′ is satisfiable iff φ is
satisfiable.

Chandra Chekuri (UIUC) CS/ECE 374 43 Spring 2023 43 / 50

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with k > 3 literals: Let c = ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓk .

Let u be a new variable. Consider

c ′ =
(
ℓ1 ∨ ℓ2 . . . ℓk−2 ∨ u

)
∧

(
ℓk−1 ∨ ℓk ∨ ¬u

)
.

2 Suppose φ = ψ ∧ c . Then φ′ = ψ ∧ c ′ is satisfiable iff φ is
satisfiable.

Chandra Chekuri (UIUC) CS/ECE 374 44 Spring 2023 44 / 50

Breaking a clause

Lemma

Let X and Y be boolean formulas in some variables and z a new
boolean variable. Then

X ∨ Y is satisfiable

if and only if (
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable.

Proof.

Exercise.

Chandra Chekuri (UIUC) CS/ECE 374 45 Spring 2023 45 / 50

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = ℓ1 ∨ · · · ∨ ℓk . Let u1, . . . uk−3 be new variables. Consider

c ′ =
(
ℓ1 ∨ ℓ2 ∨ u1

)
∧

(
ℓ3 ∨ ¬u1 ∨ u2

)
∧

(
ℓ4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
ℓk−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
ℓk−1 ∨ ℓk ∨ ¬uk−3

)
.

Claim

φ = ψ ∧ c is satisfiable iff φ′ = ψ ∧ c ′ is satisfiable.

Another way to see it — reduce size of clause by one:

c ′ =
(
ℓ1 ∨ ℓ2 . . . ∨ ℓk−2 ∨ uk−3

)
∧

(
ℓk−1 ∨ ℓk ∨ ¬uk−3

)
.

Chandra Chekuri (UIUC) CS/ECE 374 46 Spring 2023 46 / 50

An Example

Example

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra Chekuri (UIUC) CS/ECE 374 47 Spring 2023 47 / 50

An Example

Example

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra Chekuri (UIUC) CS/ECE 374 47 Spring 2023 47 / 50

An Example

Example

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra Chekuri (UIUC) CS/ECE 374 47 Spring 2023 47 / 50

An Example

Example

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra Chekuri (UIUC) CS/ECE 374 47 Spring 2023 47 / 50

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(φ):
// φ: CNF formula.

for each clause c of φ do
if c does not have exactly 3 literals then

construct c ′ as before

else
c ′ = c

ψ is conjunction of all c ′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

φ is satisfiable iff ψ is satisfiable because for each clause c , the new
3CNF formula c ′ is logically equivalent to c .

Chandra Chekuri (UIUC) CS/ECE 374 48 Spring 2023 48 / 50

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Chandra Chekuri (UIUC) CS/ECE 374 49 Spring 2023 49 / 50

Algorithm for 2SAT

A challenging exercise: Given a 2SAT formula show to compute its
satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a
variable x there would be two vertices with labels x = 0 and
x = 1). For ever 2CNF clause add two directed edges in the graph.
The edges are implication edges: They state that if you decide to
assign a certain value to a variable, then you must assign a certain
value to some other variable.
Now compute the strong connected components in this graph, and
continue from there...)

Chandra Chekuri (UIUC) CS/ECE 374 50 Spring 2023 50 / 50

	Intractability and Lower Bounds
	(Polynomial Time) Reductions
	Overview

	Examples of Reductions
	Independent Set and Clique
	Independent Set and Vertex Cover

	The Satisfiability Problem (SAT)

