CS/ECE 374: Algorithms & Models of Computation

Undecidability and Reductions

Lecture 21 April 13, 2023

Part I

TM Recap and Recursive/Decidable Languages

Turing Machine

- DFA with infinite tap
- One move: read, write, move one cell, change state

Turing Machine

- DFA with infinite tap
- One move: read, write, move one cell, change state

On a given input string w a TM M does one of the following:

- halt and accept w
- halt and reject w
- go into an infinite loop (not halt)
- crash in which case we think of it as rejecting w

Chandra Chekuri (UIUC)

CS/ECE 374

374

Definition

Given TM M, $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

Given TM M, $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an **algorithm** if it halts on every input and accepts/rejects.

Definition

Given TM M, $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an **algorithm** if it halts on every input and accepts/rejects.

Definition

A language L is **decidable (or recursive)** if there is an algorithm M such that L = L(M).

Definition

Given TM M, $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an **algorithm** if it halts on every input and accepts/rejects.

Definition

A language L is **decidable (or recursive)** if there is an algorithm M such that L = L(M).

Definition

A language L is recursively enumerable if there is a TM M such that L = L(M).

Chandra Chekuri (UIUC)

- If L is recursive then $\overline{L} = \Sigma^* L$ is also recursive
- If *L* is recursive then *L* is r.e.

- If L is recursive then $\overline{L} = \Sigma^* L$ is also recursive
- If *L* is recursive then *L* is r.e.
- Suppose *L* is r.e. L = L(M) for some *M*.
 - If $w \in L$ then M halts and accepts w.

- If L is recursive then $\overline{L} = \Sigma^* L$ is also recursive
- If *L* is recursive then *L* is r.e.
- Suppose *L* is r.e. L = L(M) for some *M*.
 - If $w \in L$ then M halts and accepts w.
 - If $w \not\in L$ then

- If L is recursive then $\overline{L} = \Sigma^* L$ is also recursive
- If *L* is recursive then *L* is r.e.
- Suppose *L* is r.e. L = L(M) for some *M*.
 - If $w \in L$ then M halts and accepts w.
 - If w ∉ L then M may or may not halt! If M halts then it rejects w.

- If L is recursive then $\overline{L} = \Sigma^* L$ is also recursive
- If *L* is recursive then *L* is r.e.
- Suppose *L* is r.e. L = L(M) for some *M*.
 - If $w \in L$ then M halts and accepts w.
 - If w ∉ L then M may or may not halt! If M halts then it rejects w.

Question: Are r.e languages interesting? And why?

- Technical/mathematical reasons
- Pragmatic reasons. We are used to programs that are correct, but are willing to give up on efficiency/halting.

- If L is recursive then $\overline{L} = \Sigma^* L$ is also recursive
- If *L* is recursive then *L* is r.e.
- Suppose *L* is r.e. L = L(M) for some *M*.
 - If $w \in L$ then M halts and accepts w.
 - If w ∉ L then M may or may not halt! If M halts then it rejects w.

Question: Are r.e languages interesting? And why?

- Technical/mathematical reasons
- Pragmatic reasons. We are used to programs that are correct, but are willing to give up on efficiency/halting.

Definition

L is **undecidable** if there is no algorithm *M* such that L = L(M). *L* is **not r.e** if there is no TM *M* such that L = L(M).

Chandra Chekuri (UIUC)

Universal TM

A single TM that can simulate other TMs. Basis of modern computers. Single computer that runs many different programs.

UTM takes as input (*M*) (encoding of a TM *M*) and a string *w*. Typically written as (*M*, *w*).

Universal TM

A single TM that can simulate other TMs. Basis of modern computers. Single computer that runs many different programs.

- UTM takes as input (*M*) (encoding of a TM *M*) and a string *w*. Typically written as (*M*, *w*).
- UTM simulates M on w.
 - If **M** accepts **w** then UTM accepts its input $\langle \mathbf{M}, \mathbf{w} \rangle$.
 - If **M** halts and rejects **w** then UTM rejects its input $\langle \mathbf{M}, \mathbf{w} \rangle$.
 - If *M* does not halt on *w* then UTM also does not halt on input $\langle M, w \rangle$ and hence does not accept its input.

Universal TM

A single TM that can simulate other TMs. Basis of modern computers. Single computer that runs many different programs.

- UTM takes as input (*M*) (encoding of a TM *M*) and a string *w*. Typically written as (*M*, *w*).
- UTM simulates M on w.
 - If **M** accepts **w** then UTM accepts its input $\langle \mathbf{M}, \mathbf{w} \rangle$.
 - If **M** halts and rejects **w** then UTM rejects its input $\langle \mathbf{M}, \mathbf{w} \rangle$.
 - If *M* does not halt on *w* then UTM also does not halt on input $\langle M, w \rangle$ and hence does not accept its input.
- What is the language of UTM? Special name called Universal Language denote by *L_u*.

 $L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w_{\cdot} \}.$

Encoding TMs

Observation

There is a fixed encoding such that every TM M can be represented as a unique binary string.

Equivalently we think of a TM as simply a program which is a string.

For each string that is not a valid encoding we associate a *dummy* TM that does not accept any string. Why?

Encoding TMs

Observation

There is a fixed encoding such that every TM M can be represented as a unique binary string.

Equivalently we think of a TM as simply a program which is a string.

For each string that is not a valid encoding we associate a *dummy* TM that does not accept any string. Why?

One-to-one correspondence between binary strings and TMs.

 M_i is the the TM associate with integer i

How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

Easy but important corollaries:

- Hence, countably infinite number of r.e (hence also recursive) languages
- Number of languages is uncountably infinite! Hence there must be languages that are not r.e/recursive and hence undecidable! In fact, most languages are undecidable!

How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

Easy but important corollaries:

- Hence, countably infinite number of r.e (hence also recursive) languages
- Number of languages is uncountably infinite! Hence there must be languages that are not r.e/recursive and hence undecidable! In fact, most languages are undecidable!

Question: Which interesting languages are undecidable/not r.e?

Part II

Undecidable Languages and Proofs via Reductions

Undecidable Languages

Counting argument shows that too many languages and too few TMs/programs hence most languages are not decidable.

What "real-world" and "natural" languages are undecidable?

Short answer: reasoning about general programs is difficult.

Undecidable Languages

Counting argument shows that too many languages and too few TMs/programs hence most languages are not decidable.

What "real-world" and "natural" languages are undecidable?

Short answer: reasoning about general programs is difficult.

Theorem (Turing)

Following languages are undecidable.

- $L_{HALT} = \{ \langle M \rangle \mid M \text{ halts on blank input} \}$
- $L_{HALT,w} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$
- $L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$

Recall that languages are problems. Jeff's notes calls Halting problem HALT (the second version)

What else is undecidable?

- Via (sometimes highly non-trivial) reductions one can show
 - Essentially many questions about sufficiently general programs are undecidable
 - Many problems in mathematical logic are undecidable
 - Posts correspondence problem which is a string problem
 - Tiling problems
 - Problems in mathematics such as Diophantine equation solution (Hilbert's 10th problem)

Undecidablity connects computation to mathematics/logic and proofs

What do we want you to know?

- The core undecidable problems (HALT and L_u)
- Ability to do simple reductions that prove undecidability of program behaviour

Reductions

- **2** $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- $\bigcirc \implies \text{New algorithm for } X:$

We write $X \leq Y$ if X reduces to Y

Lemma

If $X \leq Y$ and X is undecidable then Y is undecidable.

CS 125 assignment

Write a program that prints "Hello World"

```
main() {
    print(''Hello World'')
}
```

CS 125 assignment

Write a program that prints "Hello World"

```
main() {
    print(''Hello World'')
}
```

Question: Can we create an autograder?

CS 125 assignment

Write a program that prints "Hello World"

```
main() {
    print(''Hello World'')
}
```

Question: Can we create an autograder? No! Why?

```
main() {
    stealthcode()
    print(''Hello World'')
}
stealthcode() {
    do this
    do that
    viola
}
```

Chandra Chekuri (UIUC)

• Halting problem: given arbitrary program foo(), does it halt?

- Halting problem: given *arbitrary* program foo(), does it halt?
- Reduction to CS125Autograder: given foo() output foobar()

```
main() {
   foo()
   print(''Hello World'')
}
foo() {
   line 1
   line 2
   ...
}
```

Note: Reduction only needs to add a few lines of code to foo()

- Halting problem: given *arbitrary* program foo(), does it halt?
- Reduction to CS125Autograder: given foo() output foobar()

```
main() {
    foo()
    print(''Hello World'')
}
foo() {
    line 1
    line 2
    ...
}
```

Note: Reduction only needs to add a few lines of code to foo()

- foobar() prints "Hello World" if and only if foo() halts!
- If we had CS125Autograder then we can solve Halting. But Halting is hard according to Turing. Hence ...

Chandra Chekuri (UIUC)

```
15
```


HALT Decider

Connection to proofs

Goldbach's conjecture: Every *even* integer \geq 4 can be written as sum of two primes. Made in 1742, still open.

Connection to proofs

Goldbach's conjecture: Every *even* integer \geq 4 can be written as sum of two primes. Made in 1742, still open.

If Halting can be solved then can solve Goldbach's conjecture. How? Can write a program that halts if and only if conjecture is *false*.

```
golbach() {
    n = 4
    repeat
    flag = FALSE
    for (int i = 2, i < n; i + +) do
        If (i and (n - i) are both prime)
            flag = TRUE; Break
    If (!flag) return ''Goldbach's Conjecture is False''
    n = n + 2
    Until (TRUE)
}</pre>
```

17

More reduction about languages

We will show following languages about program behaviour are undecidable.

- $L_{374} = \{ \langle M \rangle \mid L(M) = \{ 0^{374} \} \}$
- $L_{\neq \emptyset} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$
- a template to show that essentially checking whether a given program's language satisfies some non-trivial property is undecidable

Same proof technique as the one for autograder

Understanding: What is the problem of deciding **L**₃₇₄?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Understanding: What is the problem of deciding **L**₃₇₄?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Understanding: What is the problem of deciding **L**₃₇₄?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Prove that if we had a decider Decide L_{374} for L_{374} then we can create a decider for HALT.

Understanding: What is the problem of deciding **L**₃₇₄?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Prove that if we had a decider Decide L_{374} for L_{374} then we can create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program *foo*() and needs to check if *foo*() halts.

Understanding: What is the problem of deciding **L**₃₇₄?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Prove that if we had a decider Decide L_{374} for L_{374} then we can create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and needs to check if foo() halts. Reduction should transform foo() into a program fooboo() such that answer to fooboo() from Decide L_{374} will let us know if foo() halts.

Chandra Chekuri (UIUC)

A simple program *simpleboo(str w)*

simpleboo(str w) { if $(w = 0^{374})$ then return YES return NO }

Easy to see that $L(simpleboo()) = \{0^{374}\}.$

A simple program *simpleboo(str w)*

simpleboo(str w) { if $(\mathbf{w} = 0^{374})$ then return YES return NO

Easy to see that $L(simpleboo()) = \{0^{374}\}.$

Given arbitrary program *foo()* reduction creates *fooboo(str w)*:

```
fooboo(str w) {
    foo()
    if (w = 0^{374}) then Return YES
    return NO
foo () {
code of foo ...
                       20
```

Chandra Chekuri (UIUC)

Lemma

Language of fooboo() is $\{0^{374}\}$ if foo() halts. Language of fooboo() is \emptyset if foo() does not halt.

Lemma

Language of fooboo() is $\{0^{374}\}$ if foo() halts. Language of fooboo() is \emptyset if foo() does not halt.

Corollary

fooboo() in L_{374} if and only if foo() $\in L_{HALT}$.

Corollary

If L_{374} is decidable then L_{HALT} is decidable. Since L_{HALT} is undecidable L_{374} is undecidable.

Understanding: What is the problem of deciding $L_{\neq \emptyset}$?

Given an arbitrary program **boo**(**str w**) does **boo**() accept any string?

Understanding: What is the problem of deciding $L_{\neq \emptyset}$?

Given an arbitrary program **boo**(**str w**) does **boo**() accept any string?

Reduce from HALT: given arbitrary program *foo*() create *fooboo*() such that *fooboo*() accepts some string iff *foo*() halts.

A simple program *simpleboo(str w)*

simpeboo(str w) {
return YES
}

Easy to see that $L(simpleboo()) = \Sigma^*$ and hence not empty.

A simple program *simpleboo(str w)*

simpeboo(str w) {
return YES
}

Easy to see that $L(simpleboo()) = \Sigma^*$ and hence not empty.

Given arbitrary program *foo*(), reduction creates *fooboo*(*str w*):

```
fooboo(str w) {
    foo()
    return YES
}
foo () {
    code of foo ...
}
```

23

Lemma

Language of fooboo() is Σ^* if foo() halts. Language of fooboo() is \emptyset if foo() does not halt.

Lemma

Language of **fooboo**() is Σ^* if **foo**() halts. Language of **fooboo**() is \emptyset if **foo**() does not halt.

Corollary

fooboo() in $L_{\neq \emptyset}$ if and only if foo() $\in L_{HALT}$.

Lemma

If **L** is recursive then $\overline{\mathbf{L}} = \Sigma^* - \mathbf{L}$ is recursive.

Lemma

If **L** is recursive then $\overline{\mathbf{L}} = \Sigma^* - \mathbf{L}$ is recursive.

Lemma

Suppose L and \overline{L} are both r.e. Then L is recursive.

Lemma

If **L** is recursive then $\overline{\mathbf{L}} = \Sigma^* - \mathbf{L}$ is recursive.

Lemma

Suppose L and \overline{L} are both r.e. Then L is recursive.

Proof.

We have TMs M, M' such that L = L(M) and $\overline{L} = L(M')$. Construct new TM M^* that on input w simulates both M and M' on w in parallel. One of them has to halt and give right answer.

Lemma

If **L** is recursive then $\overline{\mathbf{L}} = \Sigma^* - \mathbf{L}$ is recursive.

Lemma

Suppose L and \overline{L} are both r.e. Then L is recursive.

Proof.

We have TMs M, M' such that L = L(M) and $\overline{L} = L(M')$. Construct new TM M^* that on input w simulates both M and M' on w in parallel. One of them has to halt and give right answer.

Corollary

Suppose L is r.e but not recursive. Then \overline{L} is not r.e.

Chandra Chekuri (UIUC)

CS/ECE 374

25

Corollary

Suppose **L** is r.e but not recursive. Then \overline{L} is not r.e.

Thus $\overline{L_{HALT}}$ and $\overline{L_u}$ are not even r.e. What does this mean?

Corollary

Suppose **L** is r.e but not recursive. Then \overline{L} is not r.e.

Thus $\overline{L_{HALT}}$ and $\overline{L_u}$ are not even r.e. What does this mean?

What problem is $\overline{L_{HALT}}$? Given code/program $\langle M \rangle$ does it *not* halt on blank input? How can we tell?

We can simulate M using a UTM. How long? If M halts during simulation, UTM can reject $\langle M \rangle$. But if it does not halt after a billion steps can we stop simulation and say for sure that M will not halt? Perhaps there are other ways of figuring this out? Proof says no.

26

Part III

Undecidablity of Halting

Chandra Chekuri (UIUC)

CS/ECE 374

27

Turing's Theorem

Theorem (Turing)

Following languages are undecidable.

- $L_{HALT} = \{ \langle M \rangle \mid M \text{ halts on blank input} \}$
- $L_{HALT,w} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$
- $L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$

Exercise: Prove that the above languages can be reduced to each other.

Turing's Theorem

Theorem (Turing)

Following languages are undecidable.

- $L_{HALT} = \{ \langle M \rangle \mid M \text{ halts on blank input} \}$
- $L_{HALT,w} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$
- $L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$

Exercise: Prove that the above languages can be reduced to each other.

Two proofs

- A two step one based on Cantor's diagonalization
- A slick one but essentially the same idea in a different fashion

Diagonalization based proof

TMs can be put in 1-1 correspondence with integers: M_i is *i*'th TM

Definition

 $L_{d} = \{ \langle i \rangle \mid M_{i} \text{ does not accept } \langle i \rangle \}. \text{ Same as} \\ L_{d} = \{ \langle M_{i} \rangle \mid M_{i} \text{ does not accept } \langle i \rangle \}.$

Understanding *L_d*

	w _o	w ₁	w ₂	W 3	W ₄	w ₅	w ₆	w ₇	w ₈	w 9	
M ₀	no	no	no	no	no	no	no	no	no	no	
<i>M</i> ₁	yes	no	no	yes	no	yes	yes	yes	yes	no	
<i>M</i> ₂	no	yes	yes	no	no	yes	no	yes	no	no	
M ₃	no	yes	no	yes	no	yes	no	yes	no	yes	
M ₄	yes	yes	yes	yes	no	no	no	no	no	no	
M ₅	no	no	no	no	no	no	no	no	no	no	
<i>M</i> ₆	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	
M ₇	yes	yes	no	no	yes	yes	yes	no	no	yes	
<i>M</i> ₈	no	yes	no	no	yes	no	yes	yes	yes	no	
M ₉	no	no	no	yes	yes	no	yes	no	yes	yes	

Understanding *L_d*

	w _o	w 1	w ₂	<i>W</i> ₃	W ₄	w 5	w ₆	w ₇	w 8	w 9	
M ₀	no	no	no	no	no	no	no	no	no	no	
<i>M</i> ₁	yes	no	no	yes	no	yes	yes	yes	yes	no	
<i>M</i> ₂	no	yes	yes	no	no	yes	no	yes	no	no	
M ₃	no	yes	no	yes	no	yes	no	yes	no	yes	
<i>M</i> 4	yes	yes	yes	yes	no	no	no	no	no	no	
M5	no	no	no	no	no	no	no	no	no	no	
M ₆	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	
M7	yes	yes	no	no	yes	yes	yes	no	no	yes	
<i>M</i> ₈	no	yes	no	no	yes	no	yes	yes	yes	no	
M ₉	no	no	no	yes	yes	no	yes	no	yes	yes	

Chandra Chekuri (UIUC)

CS/ECE 374

Understanding *L_d*

	w _o	w ₁	w ₂	W 3	W 4	w ₅	w ₆	w ₇	w 8	w 9	
M ₀	yes	no	no	no	no	no	no	no	no	no	
M 1	yes	yes	no	yes	no	yes	yes	yes	yes	no	
M ₂	no	yes	no	no	no	yes	no	yes	no	no	
M ₃	no	yes	no	no	no	yes	no	yes	no	yes	
<i>M</i> 4	yes	yes	yes	yes	yes	no	no	no	no	no	
M5	no	no	no	no	no	yes	no	no	no	no	
<i>M</i> ₆	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	
M ₇	yes	yes	no	no	yes	yes	yes	yes	no	yes	
<i>M</i> ₈	no	yes	no	no	yes	no	yes	yes	no	no	
M ₉	no	no	no	yes	yes	no	yes	no	yes	no	

Chandra Chekuri (UIUC)

$L_d = \{ \langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

$$L_d = \{ \langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$.

$L_d = \{ \langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$. Does $\langle i^* \rangle \in L_d$?

$L_d = \{ \langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$. Does $\langle i^* \rangle \in L_d$?

• If yes then M_{i^*} accepts $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $\langle i^* \rangle \not\in L_d$ by definition of L_d .

$L_d = \{ \langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$. Does $\langle i^* \rangle \in L_d$?

- If yes then M_{i^*} accepts $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $\langle i^* \rangle \not\in L_d$ by definition of L_d .
- If no then M_{i^*} does not accept $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $\langle i^* \rangle \in L_d$ by definition of L_d .

$L_d = \{ \langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$. Does $\langle i^* \rangle \in L_d$?

- If yes then M_{i^*} accepts $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $\langle i^* \rangle \not\in L_d$ by definition of L_d .
- If no then M_{i^*} does not accept $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $\langle i^* \rangle \in L_d$ by definition of L_d .

Thus we obtain a contradiction in both cases which implies that L_d is **not** r.e.

33

L_d is not r.e implies L_u is not decidable

Lemma

 $L_d \leq \overline{L_u}$. That is, if there is an algorithm for $\overline{L_u}$ then there is an algorithm for L_d . Equivalently, if there is an algorithm for L_u then there is an algorithm for L_d .

L_d is not r.e implies L_u is not decidable

Lemma

 $L_d \leq \overline{L_u}$. That is, if there is an algorithm for $\overline{L_u}$ then there is an algorithm for L_d . Equivalently, if there is an algorithm for L_u then there is an algorithm for L_d .

Algorithm for L_d from an algorithm for L_u :

- Given $\langle i \rangle$ we simply feed $\langle M_i, i \rangle$ to algorithm for L_u
- If algorithm for L_u says NO return YES Else return NO

L_d is not r.e implies L_u is not decidable

Lemma

 $L_d \leq \overline{L_u}$. That is, if there is an algorithm for $\overline{L_u}$ then there is an algorithm for L_d . Equivalently, if there is an algorithm for L_u then there is an algorithm for L_d .

Algorithm for L_d from an algorithm for L_u :

- Given $\langle i \rangle$ we simply feed $\langle M_i, i \rangle$ to algorithm for L_u
- If algorithm for L_u says NO return YES Else return NO

Corollary

L_u is undecidable.

Corollary

L_{HALT} is undecidable.

The Big Picture

