CS/ECE 374: Algorithms \& Models of Computation

Undecidability and Reductions

Lecture 21
April 13, 2023

Part I

TM Recap and Recursive/Decidable Languages

Turing Machine

- DFA with infinite tap
- One move: read, write, move one cell, change state

Turing Machine

- DFA with infinite tap
- One move: read, write, move one cell, change state

On a given input string w a TM M does one of the following:

- halt and accept w
- halt and reject w
- go into an infinite loop (not halt)
- crash in which case we think of it as rejecting w

Recursive and Recursively Enumerable

Definition

Given TM $M, L(M)=\left\{w \in \Sigma^{*} \mid M\right.$ accepts $\left.w\right\}$.
We say M accepts L.
Caveat: A language L can be accepted by many different TMs.

Recursive and Recursively Enumerable

Definition

Given TM $M, L(M)=\left\{w \in \Sigma^{*} \mid M\right.$ accepts $\left.w\right\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an algorithm if it halts on every input and accepts/rejects.

Recursive and Recursively Enumerable

Definition

Given TM $M, L(M)=\left\{w \in \Sigma^{*} \mid M\right.$ accepts $\left.w\right\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an algorithm if it halts on every input and accepts/rejects.

Definition

A language L is decidable (or recursive) if there is an algorithm M such that $L=L(M)$.

Recursive and Recursively Enumerable

Definition

Given TM $M, L(M)=\left\{w \in \Sigma^{*} \mid M\right.$ accepts $\left.w\right\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an algorithm if it halts on every input and accepts/rejects.

Definition

A language L is decidable (or recursive) if there is an algorithm M such that $L=L(M)$.

Definition

A language L is recursively enumerable if there is a TM M such that $L=L(M)$.

Recursive and Recursively Enumerable

- If L is recursive then $\bar{L}=\Sigma^{*}-L$ is also recursive
- If L is recursive then L is r.e.

Recursive and Recursively Enumerable

- If L is recursive then $\bar{L}=\Sigma^{*}-L$ is also recursive
- If L is recursive then L is r.e.
- Suppose L is r.e. $L=L(M)$ for some M.
- If $\boldsymbol{w} \in \boldsymbol{L}$ then \boldsymbol{M} halts and accepts \boldsymbol{w}.

Recursive and Recursively Enumerable

- If L is recursive then $\bar{L}=\Sigma^{*}-L$ is also recursive
- If L is recursive then L is r.e.
- Suppose L is r.e. $L=L(M)$ for some M.
- If $\boldsymbol{w} \in \boldsymbol{L}$ then \boldsymbol{M} halts and accepts \boldsymbol{w}.
- If $\boldsymbol{w} \notin L$ then

Recursive and Recursively Enumerable

- If L is recursive then $\bar{L}=\Sigma^{*}-L$ is also recursive
- If L is recursive then L is r.e.
- Suppose L is r.e. $L=L(M)$ for some M.
- If $\boldsymbol{w} \in \boldsymbol{L}$ then \boldsymbol{M} halts and accepts \boldsymbol{w}.
- If $\boldsymbol{w} \notin \boldsymbol{L}$ then \boldsymbol{M} may or may not halt! If \boldsymbol{M} halts then it rejects \boldsymbol{w}.

Recursive and Recursively Enumerable

- If L is recursive then $\bar{L}=\Sigma^{*}-L$ is also recursive
- If L is recursive then L is r.e.
- Suppose L is r.e. $L=L(M)$ for some M.
- If $\boldsymbol{w} \in \boldsymbol{L}$ then \boldsymbol{M} halts and accepts \boldsymbol{w}.
- If $\boldsymbol{w} \notin \boldsymbol{L}$ then \boldsymbol{M} may or may not halt! If \boldsymbol{M} halts then it rejects \boldsymbol{w}.

Question: Are r.e languages interesting? And why?

- Technical/mathematical reasons
- Pragmatic reasons. We are used to programs that are correct, but are willing to give up on efficiency/halting.

Recursive and Recursively Enumerable

- If L is recursive then $\bar{L}=\Sigma^{*}-L$ is also recursive
- If L is recursive then L is r.e.
- Suppose L is r.e. $L=L(M)$ for some M.
- If $\boldsymbol{w} \in \boldsymbol{L}$ then \boldsymbol{M} halts and accepts \boldsymbol{w}.
- If $\boldsymbol{w} \notin \boldsymbol{L}$ then \boldsymbol{M} may or may not halt! If \boldsymbol{M} halts then it rejects \boldsymbol{w}.

Question: Are r.e languages interesting? And why?

- Technical/mathematical reasons
- Pragmatic reasons. We are used to programs that are correct, but are willing to give up on efficiency/halting.

Definition

L is undecidable if there is no algorithm M such that $L=L(M)$. L is not r.e if there is no TM M such that $L=L(M)$.

Universal TM

A single TM that can simulate other TMs. Basis of modern computers. Single computer that runs many different programs.

- UTM takes as input $\langle\boldsymbol{M}\rangle$ (encoding of a TM M) and a string w. Typically written as $\langle M, w\rangle$.

Universal TM

A single TM that can simulate other TMs. Basis of modern computers. Single computer that runs many different programs.

- UTM takes as input $\langle\boldsymbol{M}\rangle$ (encoding of a TM M) and a string w. Typically written as $\langle M, w\rangle$.
- UTM simulates M on w.
- If \boldsymbol{M} accepts \boldsymbol{w} then UTM accepts its input $\langle\boldsymbol{M}, \boldsymbol{w}\rangle$.
- If \boldsymbol{M} halts and rejects \boldsymbol{w} then UTM rejects its input $\langle\boldsymbol{M}, \boldsymbol{w}\rangle$.
- If \boldsymbol{M} does not halt on \boldsymbol{w} then UTM also does not halt on input $\langle\boldsymbol{M}, \boldsymbol{w}\rangle$ and hence does not accept its input.

Universal TM

A single TM that can simulate other TMs. Basis of modern computers. Single computer that runs many different programs.

- UTM takes as input $\langle M\rangle$ (encoding of a TM M) and a string w. Typically written as $\langle M, w\rangle$.
- UTM simulates M on w.
- If \boldsymbol{M} accepts \boldsymbol{w} then UTM accepts its input $\langle\boldsymbol{M}, \boldsymbol{w}\rangle$.
- If \boldsymbol{M} halts and rejects \boldsymbol{w} then UTM rejects its input $\langle\boldsymbol{M}, \boldsymbol{w}\rangle$.
- If \boldsymbol{M} does not halt on \boldsymbol{w} then UTM also does not halt on input $\langle\boldsymbol{M}, \boldsymbol{w}\rangle$ and hence does not accept its input.
- What is the language of UTM? Special name called Universal Language denote by L_{u}.

$$
L_{u}=\{\langle M, w\rangle \mid M \text { accepts } w .\}
$$

Encoding TMs

Observation

There is a fixed encoding such that every TM M can be represented as a unique binary string.

Equivalently we think of a TM as simply a program which is a string.
For each string that is not a valid encoding we associate a dummy TM that does not accept any string. Why?

Encoding TMs

Observation

There is a fixed encoding such that every TM M can be represented as a unique binary string.

Equivalently we think of a TM as simply a program which is a string.
For each string that is not a valid encoding we associate a dummy TM that does not accept any string. Why?

One-to-one correspondence between binary strings and TMs.
$M_{\boldsymbol{i}}$ is the the TM associate with integer \boldsymbol{i}

How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.
Easy but important corollaries:

- Hence, countably infinite number of r.e (hence also recursive) languages
- Number of languages is uncountably infinite! Hence there must be languages that are not r.e/recursive and hence undecidable! In fact, most langauges are undecidable!

How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.
Easy but important corollaries:

- Hence, countably infinite number of r.e (hence also recursive) languages
- Number of languages is uncountably infinite! Hence there must be languages that are not r.e/recursive and hence undecidable! In fact, most langauges are undecidable!
Question: Which interesting languages are undecidable/not r.e?

Part II

Undecidable Languages and Proofs via Reductions

Undecidable Languages

Counting argument shows that too many languages and too few $\mathrm{TMs} /$ programs hence most languages are not decidable.

What "real-world" and "natural" languages are undecidable?

Short answer: reasoning about general programs is difficult.

Undecidable Languages

Counting argument shows that too many languages and too few $\mathrm{TMs} /$ programs hence most languages are not decidable.

What "real-world" and "natural" languages are undecidable?
Short answer: reasoning about general programs is difficult.

Theorem (Turing)

Following languages are undecidable.

- $L_{\text {HaLt }}=\{\langle M\rangle \mid M$ halts on blank input $\}$
- $L_{\text {halt }, w}=\{\langle M, w\rangle \mid M$ halts on input $w\}$
- $L_{u}=\{\langle M, w\rangle \mid M$ accepts $w\}$

Recall that languages are problems. Jeff's notes calls Halting problem HALT (the second version)

What else is undecidable?

Via (sometimes highly non-trivial) reductions one can show

- Essentially many questions about sufficiently general programs are undecidable
- Many problems in mathematical logic are undecidable
- Posts correspondence problem which is a string problem
- Tiling problems
- Problems in mathematics such as Diophantine equation solution (Hilbert's 10th problem)
Undecidablity connects computation to mathematics/logic and proofs

What do we want you to know?

- The core undecidable problems (HALT and L_{u})
- Ability to do simple reductions that prove undecidability of program behaviour

Reductions

(1) \mathcal{R} : Reduction $X \rightarrow Y$
(2) \mathcal{A}_{Y} : algorithm for Y :
(3) \Longrightarrow New algorithm for \boldsymbol{X} :

We write $X \leq Y$ if \boldsymbol{X} reduces to \boldsymbol{Y}

Lemma

If $X \leq Y$ and X is undecidable then Y is undecidable.

CS 125 assignment

Write a program that prints "Hello World"

```
main() {
    print(''Hello World'')
}
```


CS 125 assignment

Write a program that prints "Hello World"

```
main() {
    print(''Hello World'')
}
```

Question: Can we create an autograder?

CS 125 assignment

Write a program that prints "Hello World"

```
main() {
    print(''Hello World'')
}
```

Question: Can we create an autograder? No! Why?

```
main() {
    stealthcode()
    print(''Hello World'')
}
stealthcode() {
    do this
    do that
    viola
}
```


Reducing Halting to Autograder

- Halting problem: given arbitrary program foo(), does it halt?

Reducing Halting to Autograder

- Halting problem: given arbitrary program foo(), does it halt?
- Reduction to CS125Autograder: given foo() output foobar()

Note: Reduction only needs to add a few lines of code to foo()

Reducing Halting to Autograder

- Halting problem: given arbitrary program foo(), does it halt?
- Reduction to CS125Autograder: given foo() output foobar()

Note: Reduction only needs to add a few lines of code to foo()

- foobar() prints "Hello World" if and only if foo() halts!
- If we had CS125Autograder then we can solve Halting. But Halting is hard according to Turing. Hence ...

Reducing Halting to Autograder

HALT Decider

Connection to proofs

Goldbach's conjecture: Every even integer ≥ 4 can be written as sum of two primes. Made in 1742, still open.

Connection to proofs

Goldbach's conjecture: Every even integer ≥ 4 can be written as sum of two primes. Made in 1742, still open.

If Halting can be solved then can solve Goldbach's conjecture. How? Can write a program that halts if and only if conjecture is false.

```
golbach() \{
    \(\boldsymbol{n}=4\)
    repeat
        flag \(=\) FALSE
        for (int \(\boldsymbol{i}=2, \boldsymbol{i}<\boldsymbol{n} ; \boldsymbol{i}++\) ) do
        If (i) and \((\boldsymbol{n}-\boldsymbol{i})\) are both prime)
                        flag = TRUE; Break
    If (!flag) return ''Goldbach's Conjecture is False')
    \(\boldsymbol{n}=\boldsymbol{n}+2\)
    Until (TRUE)
\}
```


More reduction about languages

We will show following languages about program behaviour are undecidable.

- $L_{374}=\left\{\langle M\rangle \mid L(M)=\left\{0^{374}\right\}\right\}$
- $L_{\neq \emptyset}=\{\langle M\rangle \mid L(M) \neq \emptyset\}$
- a template to show that essentially checking whether a given program's language satisfies some non-trivial property is undecidable

Same proof technique as the one for autograder

Undecidability of L_{374}

Understanding: What is the problem of deciding L_{374} ?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Undecidability of L_{374}

Understanding: What is the problem of deciding L_{374} ?
Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Undecidability of L_{374}

Understanding: What is the problem of deciding L_{374} ?
Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Prove that if we had a decider Decide L_{374} for L_{374} then we can create a decider for HALT.

Undecidability of L_{374}

Understanding: What is the problem of deciding L_{374} ?
Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Prove that if we had a decider Decide L_{374} for L_{374} then we can create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and needs to check if $f \circ \boldsymbol{O}()$ halts.

Undecidability of L_{374}

Understanding: What is the problem of deciding L_{374} ?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Prove that if we had a decider Decide L_{374} for L_{374} then we can create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and needs to check if $f \circ o()$ halts.
Reduction should transform foo() into a program fooboo() such that answer to $\operatorname{fooboo}()$ from Decide L_{374} will let us know if $f o \boldsymbol{O}()$ halts.

Undecidability of L_{374}

A simple program simpleboo(str w)

```
simpleboo(str w) {
    if (w}=\mp@subsup{0}{}{374})\mathrm{ then return YES
    return NO
}
```

Easy to see that $L($ simpleboo ()$)=\left\{0^{374}\right\}$.

Undecidability of L_{374}

A simple program simpleboo(str w)

```
simpleboo(str w) {
    if ( }\boldsymbol{w}=\mp@subsup{0}{}{374}\mathrm{ ) then return YES
    return NO
}
```

Easy to see that $L($ simpleboo ()$)=\left\{0^{374}\right\}$.
Given arbitrary program foo() reduction creates fooboo(str w):

```
fooboo(str w) {
    foo()
    if (w}=\mp@subsup{0}{}{374})\mathrm{ then Return YES
    return NO
}
foo () {
code of foo ...
}
```


Undecidability of L_{374}

Lemma

Language of fooboo() is $\left\{0^{374}\right\}$ if foo() halts. Language of fooboo() is \emptyset if foo() does not halt.

Undecidability of L_{374}

Lemma

Language of fooboo() is $\left\{0^{374}\right\}$ if foo() halts. Language of fooboo() is \emptyset if foo() does not halt.

Corollary

fooboo() in L_{374} if and only if $f o \boldsymbol{O}() \in L_{\text {HALT }}$.

Corollary

If L_{374} is decidable then $L_{\text {HALT }}$ is decidable. Since $L_{\text {HALT }}$ is undecidable \boldsymbol{L}_{374} is undecidable.

Undecidability of $L_{\neq \emptyset}$

Understanding: What is the problem of deciding $L_{\neq \emptyset}$?
Given an arbitrary program boo(str w) does boo() accept any string?

Undecidability of $L_{\neq \emptyset}$

Understanding: What is the problem of deciding $L_{\neq \emptyset}$?
Given an arbitrary program boo(str w) does boo() accept any string?

Reduce from HALT: given arbitrary program foo() create fooboo() such that fooboo() accepts some string iff foo() halts.

Undecidability of $L_{\neq \emptyset}$

A simple program simpleboo(str w)

```
simpeboo(str w) {
return YES
}
```

Easy to see that $L($ simpleboo ()$)=\Sigma^{*}$ and hence not empty.

Undecidability of $L_{\neq \emptyset}$

A simple program simpleboo(str w)

```
simpeboo(str w) {
return YES
}
```

Easy to see that $L($ simpleboo ()$)=\Sigma^{*}$ and hence not empty.
Given arbitrary program foo(), reduction creates fooboo(str w):

```
fooboo(str w) {
        foo()
        return YES
}
foo() {
code of foo ...
}
```


Undecidability of $L_{\neq \emptyset}$

Lemma

Language of fooboo() is Σ^{*} if $f 00()$ halts. Language of fooboo() is \emptyset if $f 00()$ does not halt.

Undecidability of $L_{\neq \emptyset}$

Lemma

Language of fooboo() is Σ^{*} if foo() halts. Language of fooboo() is \emptyset if foo() does not halt.

Corollary
fooboo() in $L_{\neq \emptyset}$ if and only if $f \circ o() \in L_{\text {HALT }}$.

Beyond r.e

Lemma

If L is recursive then $\bar{L}=\Sigma^{*}-L$ is recursive.

Beyond r.e

Lemma

If L is recursive then $\bar{L}=\Sigma^{*}-L$ is recursive.

Lemma

Suppose L and \bar{L} are both r.e. Then L is recursive.

Beyond r.e

Lemma

If L is recursive then $\bar{L}=\Sigma^{*}-L$ is recursive.

Lemma

Suppose L and \bar{L} are both r.e. Then L is recursive.

Proof.

We have TMs M, M^{\prime} such that $L=L(M)$ and $\bar{L}=L\left(M^{\prime}\right)$.
Construct new TM M^{*} that on input w simulates both M and M^{\prime} on w in parallel. One of them has to halt and give right answer.

Beyond r.e

Lemma

If L is recursive then $\bar{L}=\Sigma^{*}-L$ is recursive.

Lemma

Suppose L and \bar{L} are both r.e. Then L is recursive.

Proof.

We have TMs M, M^{\prime} such that $L=L(M)$ and $\bar{L}=L\left(M^{\prime}\right)$.
Construct new TM M^{*} that on input w simulates both M and M^{\prime} on w in parallel. One of them has to halt and give right answer.

Corollary

Suppose L is r.e but not recursive. Then \bar{L} is not r.e.

Beyond r.e

Corollary

Suppose L is r.e but not recursive. Then \bar{L} is not r.e.
Thus $\overline{L_{\text {HALT }}}$ and $\overline{L_{u}}$ are not even r.e. What does this mean?

Beyond r.e

Corollary

Suppose L is r.e but not recursive. Then \bar{L} is not r.e.
Thus $\overline{L_{H A L T}}$ and $\overline{L_{u}}$ are not even r.e. What does this mean?
What problem is $\overline{L_{\text {HALT }}}$? Given code/program $\langle M\rangle$ does it not halt on blank input? How can we tell?

We can simulate M using a UTM. How long? If M halts during simulation, UTM can reject $\langle M\rangle$. But if it does not halt after a billion steps can we stop simulation and say for sure that M will not halt? Perhaps there are other ways of figuring this out? Proof says no.

Part III

Undecidablity of Halting

Turing's Theorem

Theorem (Turing)

Following languages are undecidable.

- $L_{\text {HALt }}=\{\langle M\rangle \mid M$ halts on blank input $\}$
- $L_{\text {HALT }, w}=\{\langle M, w\rangle \mid M$ halts on input $w\}$
- $L_{u}=\{\langle M, w\rangle \mid M$ accepts $w\}$

Exercise: Prove that the above languages can be reduced to each other.

Turing's Theorem

Theorem (Turing)

Following languages are undecidable.

- $L_{\text {HALt }}=\{\langle M\rangle \mid M$ halts on blank input $\}$
- $L_{\text {HALT }, w}=\{\langle M, w\rangle \mid M$ halts on input $w\}$
- $L_{u}=\{\langle M, w\rangle \mid M$ accepts $w\}$

Exercise: Prove that the above languages can be reduced to each other.

Two proofs

- A two step one based on Cantor's diagonalization
- A slick one but essentially the same idea in a different fashion

Diagonalization based proof

TMs can be put in 1-1 correspondence with integers: $M_{\boldsymbol{i}}$ is \boldsymbol{i} 'th TM

Definition

$L_{\boldsymbol{d}}=\left\{\langle\boldsymbol{i}\rangle \mid M_{\boldsymbol{i}}\right.$ does not accept $\left.\langle\boldsymbol{i}\rangle\right\}$. Same as
$L_{\boldsymbol{d}}=\left\{\left\langle M_{\boldsymbol{i}}\right\rangle \mid M_{\boldsymbol{i}}\right.$ does not accept $\left.\langle\boldsymbol{i}\rangle\right\}$.

Understanding L_{d}

| | w_{0} | w_{1} | w_{2} | w_{3} | w_{4} | w_{5} | w_{6} | w_{7} | w_{8} | w_{9} | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M_{0} | no | \ldots |
| M_{1} | yes | no | no | yes | no | yes | yes | yes | yes | no | \ldots |
| M_{2} | no | yes | yes | no | no | yes | no | yes | no | no | \ldots |
| M_{3} | no | yes | \ldots |
| M_{4} | yes | yes | yes | yes | no | no | no | no | no | no | \ldots |
| M_{5} | no | \ldots |
| M_{6} | yes | \ldots |
| M_{7} | yes | yes | no | no | yes | yes | yes | no | no | yes | \ldots |
| M_{8} | no | yes | no | no | yes | no | yes | yes | yes | no | \ldots |
| M_{9} | no | no | no | yes | yes | no | yes | no | yes | yes | \ldots |
| \ldots |

Understanding L_{d}

	w_{0}	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}	\ldots
M_{0}	no	\ldots									
M_{1}	yes	no	no	yes	no	yes	yes	yes	yes	no	\ldots
M_{2}	no	yes	yes	no	no	yes	no	yes	no	no	\ldots
M_{3}	no	yes	\ldots								
M_{4}	yes	yes	yes	yes	no	no	no	no	no	no	\ldots
M_{5}	no	\ldots									
M_{6}	yes	\ldots									
M_{7}	yes	yes	no	no	yes	yes	yes	no	no	yes	\ldots
M_{8}	no	yes	no	no	yes	no	yes	yes	yes	no	\ldots
M_{9}	no	no	no	yes	yes	no	yes	no	yes	yes	\ldots
\ldots											

Understanding L_{d}

	w_{0}	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}	\ldots
M_{0}	yes	no	\ldots								
M_{1}	yes	yes	no	yes	no	yes	yes	yes	yes	no	\ldots
M_{2}	no	yes	no	no	no	yes	no	yes	no	no	\ldots
M_{3}	no	yes	no	no	no	yes	no	yes	no	yes	\ldots
M_{4}	yes	yes	yes	yes	yes	no	no	no	no	no	\ldots
M_{5}	no	no	no	no	no	yes	no	no	no	no	\ldots
\boldsymbol{M}_{6}	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	\ldots
M_{7}	yes	yes	no	no	yes	yes	yes	yes	no	yes	\ldots
M_{8}	no	yes	no	no	yes	no	yes	yes	no	no	\ldots
M_{9}	no	no	no	yes	yes	no	yes	no	yes	no	\ldots
\ldots											

L_{d} is not r.e

$L_{\boldsymbol{d}}=\left\{\langle i\rangle \mid M_{\boldsymbol{i}}\right.$ does not accept $\left.\langle i\rangle\right\}$.
Theorem
L_{d} is not r.e.

L_{d} is not r.e

$L_{\boldsymbol{d}}=\left\{\langle i\rangle \mid M_{\boldsymbol{i}}\right.$ does not accept $\left.\langle i\rangle\right\}$.

Theorem

L_{d} is not r.e.
Proof by contradiction. Suppose it is. Then there is some \boldsymbol{i}^{*} such that $L_{d}=L\left(M_{i^{*}}\right)$.

L_{d} is not r.e

$L_{\boldsymbol{d}}=\left\{\langle i\rangle \mid M_{\boldsymbol{i}}\right.$ does not accept $\left.\langle i\rangle\right\}$.

Theorem
 L_{d} is not r.e.

Proof by contradiction. Suppose it is. Then there is some \boldsymbol{i}^{*} such that $L_{d}=L\left(M_{i^{*}}\right)$. Does $\left\langle i^{*}\right\rangle \in L_{d}$?

L_{d} is not r.e

$L_{\boldsymbol{d}}=\left\{\langle\boldsymbol{i}\rangle \mid M_{\boldsymbol{i}}\right.$ does not accept $\left.\langle\boldsymbol{i}\rangle\right\}$.

Theorem

L_{d} is not r.e.
Proof by contradiction. Suppose it is. Then there is some \boldsymbol{i}^{*} such that $L_{\boldsymbol{d}}=\boldsymbol{L}\left(\mathbf{M}_{\boldsymbol{i}^{*}}\right)$. Does $\left\langle\boldsymbol{i}^{*}\right\rangle \in L_{\boldsymbol{d}}$?

- If yes then $\boldsymbol{M}_{\boldsymbol{i}^{*}}$ accepts $\left\langle\boldsymbol{i}^{*}\right\rangle$ since $\boldsymbol{L}_{\boldsymbol{d}}=\boldsymbol{L}\left(\boldsymbol{M}_{\boldsymbol{i}^{*}}\right)$. But this is a contradiction since $\left\langle i^{*}\right\rangle \notin L_{d}$ by definition of $L_{\boldsymbol{d}}$.

L_{d} is not r.e

$L_{\boldsymbol{d}}=\left\{\langle i\rangle \mid M_{\boldsymbol{i}}\right.$ does not accept $\left.\langle\boldsymbol{i}\rangle\right\}$.

Theorem

$L_{\boldsymbol{d}}$ is not r.e.
Proof by contradiction. Suppose it is. Then there is some \boldsymbol{i}^{*} such that $L_{\boldsymbol{d}}=\boldsymbol{L}\left(M_{\boldsymbol{i}^{*}}\right)$. Does $\left\langle i^{*}\right\rangle \in L_{\boldsymbol{d}}$?

- If yes then $\boldsymbol{M}_{\boldsymbol{i}^{*}}$ accepts $\left\langle\boldsymbol{i}^{*}\right\rangle$ since $\boldsymbol{L}_{\boldsymbol{d}}=\boldsymbol{L}\left(\boldsymbol{M}_{\boldsymbol{i}^{*}}\right)$. But this is a contradiction since $\left\langle i^{*}\right\rangle \notin L_{\boldsymbol{d}}$ by definition of $L_{\boldsymbol{d}}$.
- If no then $M_{\boldsymbol{i}^{*}}$ does not accept $\left\langle\boldsymbol{i}^{*}\right\rangle$ since $L_{\boldsymbol{d}}=L\left(M_{\boldsymbol{i}^{*}}\right)$. But this is a contradiction since $\left\langle i^{*}\right\rangle \in L_{\boldsymbol{d}}$ by definition of $L_{\boldsymbol{d}}$.

L_{d} is not r.e

$L_{\boldsymbol{d}}=\left\{\langle i\rangle \mid M_{\boldsymbol{i}}\right.$ does not accept $\left.\langle\boldsymbol{i}\rangle\right\}$.

Theorem

$L_{\boldsymbol{d}}$ is not r.e.
Proof by contradiction. Suppose it is. Then there is some \boldsymbol{i}^{*} such that $L_{\boldsymbol{d}}=\boldsymbol{L}\left(\mathbf{M}_{\boldsymbol{i}^{*}}\right)$. Does $\left\langle\boldsymbol{i}^{*}\right\rangle \in L_{\boldsymbol{d}}$?

- If yes then $\boldsymbol{M}_{\boldsymbol{i}^{*}}$ accepts $\left\langle\boldsymbol{i}^{*}\right\rangle$ since $\boldsymbol{L}_{\boldsymbol{d}}=\boldsymbol{L}\left(\boldsymbol{M}_{\boldsymbol{i}^{*}}\right)$. But this is a contradiction since $\left\langle i^{*}\right\rangle \notin L_{\boldsymbol{d}}$ by definition of $L_{\boldsymbol{d}}$.
- If no then $M_{\boldsymbol{i}^{*}}$ does not accept $\left\langle\boldsymbol{i}^{*}\right\rangle$ since $\boldsymbol{L}_{\boldsymbol{d}}=L\left(\boldsymbol{M}_{\boldsymbol{i}^{*}}\right)$. But this is a contradiction since $\left\langle i^{*}\right\rangle \in L_{\boldsymbol{d}}$ by definition of $L_{\boldsymbol{d}}$.
Thus we obtain a contradiction in both cases which implies that $\boldsymbol{L}_{\boldsymbol{d}}$ is not r.e.

L_{d} is not r.e implies L_{u} is not decidable

Lemma

$L_{d} \leq \overline{L_{u}}$. That is, if there is an algorithm for $\overline{L_{u}}$ then there is an algorithm for $\boldsymbol{L}_{\boldsymbol{d}}$. Equivalently, if there is an algorithm for $\boldsymbol{L}_{\boldsymbol{u}}$ then there is an algorithm for $\boldsymbol{L}_{\boldsymbol{d}}$.

L_{d} is not r.e implies L_{u} is not decidable

Lemma

$\boldsymbol{L}_{\boldsymbol{d}} \leq \overline{\bar{L}_{\boldsymbol{u}}}$. That is, if there is an algorithm for $\overline{\bar{L}_{\boldsymbol{u}}}$ then there is an algorithm for $\boldsymbol{L}_{\boldsymbol{d}}$. Equivalently, if there is an algorithm for $\boldsymbol{L}_{\boldsymbol{u}}$ then there is an algorithm for $\boldsymbol{L}_{\boldsymbol{d}}$.

Algorithm for $L_{\boldsymbol{d}}$ from an algorithm for $L_{\boldsymbol{u}}$:

- Given $\langle i\rangle$ we simply feed $\left\langle M_{i}, i\right\rangle$ to algorithm for L_{u}
- If algorithm for L_{u} says $N O$ return YES Else return NO

L_{d} is not r.e implies L_{u} is not decidable

Lemma

$\boldsymbol{L}_{\boldsymbol{d}} \leq \overline{\bar{L}_{\boldsymbol{u}}}$. That is, if there is an algorithm for $\overline{\bar{L}_{\boldsymbol{u}}}$ then there is an algorithm for $\boldsymbol{L}_{\boldsymbol{d}}$. Equivalently, if there is an algorithm for $\boldsymbol{L}_{\boldsymbol{u}}$ then there is an algorithm for $\boldsymbol{L}_{\boldsymbol{d}}$.

Algorithm for $\boldsymbol{L}_{\boldsymbol{d}}$ from an algorithm for $\boldsymbol{L}_{\boldsymbol{u}}$:

- Given $\langle i\rangle$ we simply feed $\left\langle M_{i}, i\right\rangle$ to algorithm for L_{u}
- If algorithm for L_{u} says $N O$ return YES Else return NO

Corollary

L_{u} is undecidable.

Corollary

$L_{\text {HALT }}$ is undecidable.

The Big Picture

