CS/ECE 374: Algorithms & Models of
Computation

Greedy Algorithms

Lecture 20
April 11, 2023

Chandra Chekuri (UIUC) CS/ECE 374 1 Spring 2023 1/37

Part |

Greedy Algorithms: Tools and
Techniques

Chandra Chekuri (UIUC) CS/ECE 374 2 Spring 2023 2/37

What is a Greedy Algorithm?

Chandra Chekuri (UIUC) CS/ECE 374 3 Spring 2023 3/37

What is a Greedy Algorithm?

No real consensus on a universal definition.

Chandra Chekuri (UIUC) CS/ECE 374 3 Spring 2023 3/37

What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:
© make decision incrementally in small steps without backtracking

© decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

© decisions often based on some fixed and simple priority rules

Chandra Chekuri (UIUC) CS/ECE 374 3 Spring 2023 3/37

Pros and Cons of Greedy Algorithms

Pros:
© Usually (too) easy to design greedy algorithms
© Easy to implement and often run fast since they are simple
© Several important cases where they are effective/optimal

© Lead to a first-cut heuristic when problem not well understood

Chandra Chekuri (UIUC) CS/ECE 374 4 Spring 2023 4/37

Pros and Cons of Greedy Algorithms

Pros:

© Usually (too) easy to design greedy algorithms

© Easy to implement and often run fast since they are simple

© Several important cases where they are effective/optimal

© Lead to a first-cut heuristic when problem not well understood
Cons:

© Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

© Many greedy algorithms possible for a problem and no
structured way to find effective ones

Chandra Chekuri (UIUC) CS/ECE 374 4 Spring 2023 4/37

Pros and Cons of Greedy Algorithms

Pros:

© Usually (too) easy to design greedy algorithms

© Easy to implement and often run fast since they are simple

© Several important cases where they are effective/optimal

© Lead to a first-cut heuristic when problem not well understood
Cons:

© Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

© Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 374: Every greedy algorithm needs a proof of correctness

Chandra Chekuri (UIUC) CS/ECE 374 4 Spring 2023 4/37

Greedy Algorithm Types

Crude classification:

© Non-adaptive: fix some ordering of decisions a priori and stick
with the order

@ Adaptive: make decisions adaptively but greedily/locally at each
step

Chandra Chekuri (UIUC) CS/ECE 374 5 Spring 2023 5/37

Greedy Algorithm Types

Crude classification:

© Non-adaptive: fix some ordering of decisions a priori and stick
with the order

@ Adaptive: make decisions adaptively but greedily/locally at each
step

Plan:
© See several examples

© Pick up some proof techniques

Chandra Chekuri (UIUC) CS/ECE 374 5 Spring 2023 5/37

Part 1l

Scheduling Jobs to Minimize
Average Waiting Time

Chandra Chekuri (UIUC) CS/ECE 374 6 Spring 2023 6/37

The Problem

@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;
@ One server/machine/person available to process jobs.

@ Schedule/order the jobs to minimize total or average waiting

time

@ Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

Chandra Chekuri (UIUC)

J1 J2 J3 J4 J5 J6
tme| 3 | 4|1|8|2]|6
CS/ECE 374 7 Spring 2023 7/37

The Problem

@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;

@ One server/machine/person available to process jobs.

@ Schedule/order the jobs to minimize total or average waiting
time

@ Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

hh || S| dy| I | I
time | 3 | 4|18]2|6

Example: schedule is Jy, Jo, J3, Jsy J5, Js. Total waiting time is

0+3+(B3+4)+B+4+1)+B+4+1+8)+...=

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7/37

The Problem

@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;

@ One server/machine/person available to process jobs.

@ Schedule/order the jobs to minimize total or average waiting
time

@ Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

hh || S| dy| I | I
time | 3 | 4|18]2|6

Example: schedule is Jy, Jo, J3, Jsy J5, Js. Total waiting time is
0+3+(B3+4)+B+4+1)+B+4+1+8)+...=

Optimal schedule:

Chandra Chekuri (UIUC) CS/ECE 374 7 Spring 2023 7/37

The Problem

@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;
@ One server/machine/person available to process jobs.

@ Schedule/order the jobs to minimize total or average waiting

time

@ Waiting time of J; in schedule o: sum of processing times of all

jobs scheduled before J;

1

J>

I3

Js

Js

Js

time

3

4

1

8

2

6

Example: schedule is Jy, Jo, J3, Jsy J5, Js. Total waiting time is
0+3+(3+4)+B+4+1)+(B+4+1+8)+...

Optimal schedule: Shortest Job First. J3, J5, J1, oy Jg, 4.

CS/ECE 374

Chandra Chekuri (UIUC)

7

7/37

Optimality of SJF

Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8/37

Optimality of SJF

Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Intuition: case of two jobs. Say with processing times p;, p» with
p1 < p2

Chandra Chekuri (UIUC) CS/ECE 374 8 Spring 2023 8/37

Optimality of SJF

Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Proof strategy for general case: exchange argument

Chandra Chekuri (UIUC) CS/ECE 374 9 Spring 2023 9/37

Optimality of SJF

Shortest Job First gives an optimum schedule for the problem of
minimizing total waiting time.

Proof strategy for general case: exchange argument
Assume without loss of generality that job sorted in increasing order

of processing time and hence p; < p» < ... < p, and SJF order is
Jis by ooy dn.

Chandra Chekuri (UIUC) CS/ECE 374 9 Spring 2023 9/37

Inversions

Definition

A schedule J;, J;,, . .., J;, is said to have an inversion if there are
jobs J, and Jp, such that S schedules J, before Jp,, but p, > pp.

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10/37

Inversions

Definition

A schedule J;, J;,, . .., J;, is said to have an inversion if there are
jobs J, and Jp, such that S schedules J, before Jp,, but p, > pp.

If a schedule has an inversion then there is an inversion between two
adjacently scheduled jobs.

Proof: exercise.

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10/37

Proof of optimality of SJF

Recall SJF order is Ji, Joy ..oy Jp.
o Let J;,J;,...,J; bean optimum schedule with fewest
inversions.
@ If schedule has no inversions then it is identical to SJF schedule
and we are done.

@ Otherwise there is an 1 < £ < n such that iy > iy, since
schedule has inversion among two adjacently scheduled jobs

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11/37

Proof of optimality of SJF

Recall SJF order is Ji, Joy ..oy Jp.
o Let J;,J;,...,d;, bean optimum schedule with fewest
inversions.
@ If schedule has no inversions then it is identical to SJF schedule
and we are done.

@ Otherwise there is an 1 < £ < n such that iy > iy, since
schedule has inversion among two adjacently scheduled jobs

The schedule obtained from J; , J;,, . . . 4 J;, by exchanging/swapping
positions of jobs J;, and J;,,, is also optimal and has one fewer
inversion.

Assuming claim we obtain a contradiction and hence optimum
schedule with fewest inversions must be the SJF schedule.

Chandra Chekuri (UIUC) CS/ECE 374 1 Spring 2023 11/37

A Weighted Version

@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;
and a non-negative weight w;

@ One server/machine/person available to process jobs.

@ Schedule/order the jobs to minimize total or average waiting
time

@ Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

@ Goal: minimize total weighted waiting time.

J1 JQ J3 J4 J5 J6
time 3141 8 2|6
weight |10 | 5 | 2 |100 | 1 | 1

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023 12/37

A Weighted Version

@ n jobs Ji, Jo, ..., J,. J; has non-negative processing time p;
and a non-negative weight w;

@ One server/machine/person available to process jobs.

@ Schedule/order the jobs to minimize total or average waiting
time

@ Waiting time of J; in schedule o: sum of processing times of all
jobs scheduled before J;

@ Goal: minimize total weighted waiting time.

J1 JQ J3 J4 J5 J6
time 3141 8 2|6
weight |10 | 5 | 2 |100 | 1 | 1

Exercise: Argue that ordering in increasing p;/w; ratio is optimum

Chandra Chekuri (UIUC) CS/ECE 374 12 Spring 2023 12/37

Part Il

Scheduling to Minimize
Lateness

Chandra Chekuri (UIUC) CS/ECE 374 13 Spring 2023 13/37

Scheduling to Minimize Lateness

© Given jobs J;, J5, ..., J, with deadlines and processing times to
be scheduled on a single resource.

@ If a job i starts at time s; then it will finish at time f; = s; + t;,
where t; is its processing time. d;: deadline.

© The lateness of a job is [; = max(0, ; — d;).

@ Schedule all jobs such that L = max /; is minimized.

Chandra Chekuri (UIUC) CS/ECE 374 14 Spring 2023 14/37

Scheduling to Minimize Lateness

©Q Given jobs Ji, Lo, ...

be scheduled on a single resource.

, Jo with deadlines and processing times to

@ If a job i starts at time s; then it will finish at time f; = s; + t;,
where t; is its processing time. d;: deadline.

© The lateness of a job is [; = max(0, ; — d;).

@ Schedule all jobs such that L = max /; is minimized.

Ih =6

Il b | B ||| I
t; | 31214]3]| 2
d|6|8|9]|9 14|15

L =2 I =

|
(] % [%] T

0 1 2 3 4 5 6 7 9 10 11 12 13 14 15
Chandra Chekuri (UIUC) CS/ECE 374 14

Spring 2023

14/37

Greedy Template

Initially R is the set of all requests
curr_time = 0
max_lateness = 0
while R is not empty do

choose i € R

curr_time = curr_time + t;

if (curr_time > d;) then

max _lateness = max(curr_time — d;, max_lateness)

return max_lateness

Main task: Decide the order in which to process jobs in R

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15/37

Greedy Template

Initially R is the set of all requests
curr_time = 0
max_lateness = 0
while R is not empty do

choose i € R

curr_time = curr_time + t;

if (curr_time > d;) then

max _lateness = max(curr_time — d;, max_lateness)

return max_lateness

Main task: Decide the order in which to process jobs in R

Chandra Chekuri (UIUC) CS/ECE 374 15 Spring 2023 15/37

Three Algorithms

© Shortest job first — sort according to t;.
© Shortest slack first — sort according to d; — t;.
© EDF = Earliest deadline first — sort according to d;.

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023

16/37

Three Algorithms

© Shortest job first — sort according to t;.
© Shortest slack first — sort according to d; — t;.
© EDF = Earliest deadline first — sort according to d;.

Counter examples for first two: exercise

Chandra Chekuri (UIUC) CS/ECE 374 16 Spring 2023

16/37

Earliest Deadline First

Greedy with EDF rule minimizes maximum lateness. \

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/37

Earliest Deadline First

Greedy with EDF rule minimizes maximum lateness. \

Proof via an exchange argument.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/37

Earliest Deadline First

Greedy with EDF rule minimizes maximum lateness. \

Proof via an exchange argument.

Idle time: time during which machine is not working.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/37

Earliest Deadline First

Greedy with EDF rule minimizes maximum lateness.

Proof via an exchange argument.

Idle time: time during which machine is not working.

If there is a feasible schedule then there is one with no idle time
before all jobs are finished.

Chandra Chekuri (UIUC) CS/ECE 374 17 Spring 2023 17/37

Inversions

Assume jobs are sorted such that d; < d» < ... < d,. Hence EDF
schedules them in this order.

Definition

A schedule S is said to have an inversion if there are jobs i and j
such that S schedules i before j, but d; > d;.

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023 18/37

Inversions

Assume jobs are sorted such that d; < d» < ... < d,. Hence EDF
schedules them in this order.

Definition

A schedule S is said to have an inversion if there are jobs i and j
such that S schedules i before j, but d; > d;.

Claim

| A

If a schedule S has an inversion then there is an inversion between
two adjacently scheduled jobs.

A\

Proof: exercise.

Chandra Chekuri (UIUC) CS/ECE 374 18 Spring 2023 18/37

Proof sketch of Optimality of EDF

@ Let S be an optimum schedule with smallest number of
inversions.

@ If S has no inversions then this is same as EDF and we are done.
@ Else S has two adjacent jobs i and j with d; > d;.

@ Swap positions of i and j to obtain a new schedule S’

Maximum lateness of S’ is no more than that of S. And S’ has
strictly fewer inversions than S.

Chandra Chekuri (UIUC) CS/ECE 374 19 Spring 2023 19/37

Part |V

Interval Scheduling

Chandra Chekuri (UIUC) CS/ECE 374 20 Spring 2023 20/37

Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).
Goal: Schedule as many jobs as possible

Chandra Chekuri (UIUC) CS/ECE 374 21 Spring 2023 21/37

Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).
Goal: Schedule as many jobs as possible

©® Two jobs with overlapping intervals cannot both be scheduled!

i

Chandra Chekuri (UIUC) CS/ECE 374 21 Spring 2023 21/37

Greedy Template

R is the set of all requests
X < 0 (* X will store all the jobs that will be scheduled *)
while R is not empty do

choose i € R

add i to X

remove from R all requests that overlap with i

return the set X

Chandra Chekuri (UIUC) CS/ECE 374 22 Spring 2023 22 /37

Greedy Template

R is the set of all requests
X < 0 (* X will store all the jobs that will be scheduled *)

while R is not empty do
choose i € R

add i to X
remove from R all requests that overlap with i

return the set X
Main task: Decide the order in which to process requests in R

Chandra Chekuri (UIUC) CS/ECE 374 22 Spring 2023 22 /37

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/37

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/37

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/37

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/37

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/37

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/37

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure: Counter example for earliest start time

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/37

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure: Counter example for earliest start time

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/37

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure: Counter example for earliest start time

Chandra Chekuri (UIUC) CS/ECE 374 23 Spring 2023 23/37

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 /37

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 /37

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 /37

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 /37

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 /37

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure: Counter example for smallest processing time

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 /37

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure: Counter example for smallest processing time

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 /37

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure: Counter example for smallest processing time

Chandra Chekuri (UIUC) CS/ECE 374 24 Spring 2023 24 /37

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25 /37

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25 /37

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25 /37

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25 /37

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023 25 /37

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure: Counter example for fewest conflicts

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023

25/37

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure: Counter example for fewest conflicts

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023

25/37

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure: Counter example for fewest conflicts

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023

25/37

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure: Counter example for fewest conflicts

Chandra Chekuri (UIUC) CS/ECE 374 25 Spring 2023

25/37

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

; 1 —

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023

26 /37

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

; 1 —

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023

26 /37

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023

26 /37

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023

26 /37

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023

26 /37

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023

26/37

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Chandra Chekuri (UIUC) CS/ECE 374 26 Spring 2023

26/37

Optimal Greedy Algorithm

R is the set of all requests
X + 0 (x X stores the jobs that will be scheduled *)

while R is not empty
choose i € R such that finishing time of i is smallest

add i to X
remove from R all requests that overlap with i

return X

The greedy algorithm that picks jobs in the order of their finishing
times is optimal.

Chandra Chekuri (UIUC) CS/ECE 374 27 Spring 2023 27/37

Proving Optimality

© Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 /37

Proving Optimality

© Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

© For a set of requests R, let O be an optimal set and let X be
the set returned by the greedy algorithm. Then O = X7?

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 /37

Proving Optimality

© Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

© For a set of requests R, let O be an optimal set and let X be
the set returned by the greedy algorithm. Then O = X7?Not
likely!

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 /37

Proving Optimality

© Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

© For a set of requests R, let O be an optimal set and let X be
the set returned by the greedy algorithm. Then O = X7?Not
likely!

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28/37

Proving Optimality

© Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

© For a set of requests R, let O be an optimal set and let X be
the set returned by the greedy algorithm. Then O = X7?Not
likely!

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 /37

Proving Optimality

© Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

© For a set of requests R, let O be an optimal set and let X be
the set returned by the greedy algorithm. Then O = X7?Not
likely!

Instead we will show that |O| = | X]|

Chandra Chekuri (UIUC) CS/ECE 374 28 Spring 2023 28 /37

Proof of Optimality: Key Lemma

Let iy be first interval picked by Greedy. There exists an optimum
solution that contains iy.

Let O be an arbitrary optimum solution. If i; € O we are done.

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 /37

Proof of Optimality: Key Lemma

Let iy be first interval picked by Greedy. There exists an optimum
solution that contains iy.

Proof.

Let O be an arbitrary optimum solution. If i; € O we are done.
Claim: If iy &€ O then there is exactly one interval j; € O that
conflicts with i;. (proof later)

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 /37

Proof of Optimality: Key Lemma

Let iy be first interval picked by Greedy. There exists an optimum
solution that contains iy.

Let O be an arbitrary optimum solution. If i; € O we are done.
Claim: If iy &€ O then there is exactly one interval j; € O that
conflicts with i;. (proof later)

© Form a new set O’ by removing j; from O and adding iy, that is
0" =(0—-{u})u{in}
@ From claim, O’ is a feasible solution (no conflicts).

© Since |O’| = |O|, O’ is also an optimum solution and it
contains iy. m

Chandra Chekuri (UIUC) CS/ECE 374 29 Spring 2023 29 /37

Proof of Claim

If iy & O, there is exactly one interval j; € O that conflicts with i.

Q If noj € O conflicts with i; then O is not optimal!

© Suppose ji1, o € O such that j; # j» and both j; and j, conflict
with il.

© Since i has earliest finish time, j; and i, overlap at f(iy).
© For same reason j, also overlaps with i at f(iy).

© Implies that ji, j>» overlap at f(iy) but intervals in O cannot
overlap.

See figure in next slide.]

Chandra Chekuri (UIUC) CS/ECE 374 30 Spring 2023 30/37

Figure for proof of Claim

J2

J1

»

.f(ll) f(]l) f(]g) time

Figure: Since i; has the earliest finish time, any interval that conflicts
with it does so at f(i1). This implies j; and j» conflict.

Chandra Chekuri (UIUC) CS/ECE 374 31 Spring 2023 31/37

Proof of Optimality of Earliest Finish Time

First

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.
Induction Step: Assume theorem holds for i < n.

Let I be an instance with n intervals

I’: I with i; and all intervals that overlap with /; removed
G(1), G(I'): Solution produced by Greedy on I and I’

From Lemma, there is an optimum solution O to I and i; € O.
Let O’ = O — {ih}. O’ is a solution to I’.

|G(I)] = 1+ |G(I')] (from Greedy description)
> 14 |0’| (By induction, G(I’) is optimum for)
= |0

Chandra Chekuri (UIUC) CS/ECE 374 32 Spring 2023

[]

32/37

Implementation and Running Time

Initially R is the set of all requests
X + 0 (x X stores the jobs that will be scheduled *)
while R is not empty
choose i € R such that finishing time of i is least
if i does not overlap with requests in X
add i to X
remove i from R
return the set X

@ Presort all requests based on finishing time. O(nlog n) time

@ Now choosing least finishing time is O(1)

@ Keep track of the finishing time of the last request added to A.
Then check if starting time of i later than that

@ Thus, checking non-overlapping is O(1)

@ Total time O(nlog n+ n) = O(nlog n)

Chandra Chekuri (UIUC) CS/ECE 374 33 Spring 2023 33/37

Comments

© Interesting Exercise: smallest interval first picks at least half the
optimum number of intervals.

@ All requests need not be known at the beginning. Such online
algorithms are a subject of research

Chandra Chekuri (UIUC) CS/ECE 374 34 Spring 2023 34 /37

Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time s;, a finish

time f;, and a weight w;. We would like to find a set S of compatible
jobs whose total weight is maximized. Which of the following greedy
algorithms finds the optimum schedule?

@ Earliest start time first.
@ Earliest finish time fist.
@ Highest weight first.

@ None of the above.

@ IDK.

Chandra Chekuri (UIUC) CS/ECE 374 35 Spring 2023 35/37

Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time s;, a finish

time f;, and a weight w;. We would like to find a set S of compatible
jobs whose total weight is maximized. Which of the following greedy
algorithms finds the optimum schedule?

@ Earliest start time first.
@ Earliest finish time fist.
@ Highest weight first.

@ None of the above.

@ IDK.

Weighted problem can be solved via dynamic prog. See notes.

Chandra Chekuri (UIUC) CS/ECE 374 35 Spring 2023 35/37

Greedy Analysis: Overview

© Greedy's first step leads to an optimum solution. Show that
there is an optimum solution leading from the first step of
Greedy and then use induction. Example, Interval Scheduling.

© Greedy algorithm stays ahead. Show that after each step the
solution of the greedy algorithm is at least as good as the
solution of any other algorithm. Example, Interval scheduling.

© Structural property of solution. Observe some structural bound
of every solution to the problem, and show that greedy algorithm

achieves this bound. Example, Interval Partitioning (see
Kleinberg-Tardos book).

© Exchange argument. Gradually transform any optimal solution
to the one produced by the greedy algorithm, without hurting its
optimality. Example, Minimizing lateness.

Chandra Chekuri (UIUC) CS/ECE 374 36 Spring 2023 36 /37

Takeaway Points

© Greedy algorithms come naturally but often are incorrect. A
proof of correctness is an absolute necessity.

© Exchange arguments are often the key proof ingredient. Focus
on why the first step of the algorithm is correct: need to show
that there is an optimum /correct solution with the first step of
the algorithm.

© Thinking about correctness is also a good way to figure out
which of the many greedy strategies is likely to work.

Chandra Chekuri (UIUC) CS/ECE 374 37 Spring 2023 37/37

	Greedy Algorithms: Tools and Techniques
	Scheduling Jobs to Minimize Average Waiting Time
	Scheduling to Minimize Lateness
	The Problem
	The Algorithm

	Interval Scheduling
	The Algorithm
	Correctness
	Running Time
	Extensions and Comments

