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Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time. Recursion tree evaluated in preorder/DFS
fashion
Question: What is an upper bound on the running time of
memoized version of foo(x) if |x| = n? O(A(n)B(n)).
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Example: Fibonacci recurrence

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val ⇐ Fib(n − 1) + Fib(n − 2)

Store (n, val ) in D
return val

A(n) =? and B(n) =?
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Part I

Checking if string is in Kleene
star of a language
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Problem

Input A string w ∈ Σ∗, and a language L ⊆ Σ∗ via function
IsStrInL(string x) that decides whether x is in L

Goal Decide if w ∈ L∗ using IsStrInL(string x) as a black
box sub-routine

Example

Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English∗?

Is “stampstamp” in English∗?

Is “zibzzzad” in English∗?
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Recursive Solution

When is w ∈ L∗?

w ∈ L∗ iff
w = ε or
w ∈ L or
w = uv where u ∈ L and v ∈ L∗ and |u| ≥ 1

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i ]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO
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Example

Consider string samiam
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Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

IsStrInLstar(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: IsStrInLstar(n + 1) = 1 interpreting A[n + 1..n] as ε

Recursive relation:

IsStrInLstar(i) = 1 if ∃i < j ≤ n + 1 such that
(IsStrInLstar(j) = 1 and IsStrInL(A[i ..(j − 1)]) = 1)

IsStrInLstar(i) = 0 otherwise

Output: IsStrInLstar(1)
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Removing recursion: iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why?

Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10 / 32



Removing recursion: iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10 / 32



Removing recursion: iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10 / 32



Removing recursion: iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Chandra Chekuri (UIUC) CS/ECE 374 10 Spring 2023 10 / 32



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean IsStrInLstar[1..(n + 1)]
IsStrInLstar[n + 1] = TRUE
for (i = n down to 1)

IsStrInLstar[i ] = FALSE
for (j = i + 1 to n + 1)

If (IsStrInLstar[j ] and IsStrInL(A[i ..j − 1]))
IsStrInLstar[i ] = TRUE
Break

If (IsStrInLstar[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1) time)

Space: O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 32



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean IsStrInLstar[1..(n + 1)]
IsStrInLstar[n + 1] = TRUE
for (i = n down to 1)

IsStrInLstar[i ] = FALSE
for (j = i + 1 to n + 1)

If (IsStrInLstar[j ] and IsStrInL(A[i ..j − 1]))
IsStrInLstar[i ] = TRUE
Break

If (IsStrInLstar[1] = 1) Output YES

Else Output NO

Running time:

O(n2) (assuming call to IsStrInL is O(1) time)

Space: O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 32



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean IsStrInLstar[1..(n + 1)]
IsStrInLstar[n + 1] = TRUE
for (i = n down to 1)

IsStrInLstar[i ] = FALSE
for (j = i + 1 to n + 1)

If (IsStrInLstar[j ] and IsStrInL(A[i ..j − 1]))
IsStrInLstar[i ] = TRUE
Break

If (IsStrInLstar[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1) time)

Space: O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 32



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean IsStrInLstar[1..(n + 1)]
IsStrInLstar[n + 1] = TRUE
for (i = n down to 1)

IsStrInLstar[i ] = FALSE
for (j = i + 1 to n + 1)

If (IsStrInLstar[j ] and IsStrInL(A[i ..j − 1]))
IsStrInLstar[i ] = TRUE
Break

If (IsStrInLstar[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1) time)

Space:

O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 32



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean IsStrInLstar[1..(n + 1)]
IsStrInLstar[n + 1] = TRUE
for (i = n down to 1)

IsStrInLstar[i ] = FALSE
for (j = i + 1 to n + 1)

If (IsStrInLstar[j ] and IsStrInL(A[i ..j − 1]))
IsStrInLstar[i ] = TRUE
Break

If (IsStrInLstar[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1) time)

Space: O(n)

Chandra Chekuri (UIUC) CS/ECE 374 11 Spring 2023 11 / 32



Example

Consider string samiam
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Part II

Longest Increasing Subsequence
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Sequences

Definition

Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition

ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition

A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.
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Sequences
Example...

Example

1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example

1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8
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Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n − 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation

For second case we want to find a subsequence in A[1..(n − 1)] that
is restricted to numbers less than A[n]. This suggests that a more
general problem is LIS smaller(A[1..n], x) which gives the longest
increasing subsequence in A where each number in the sequence is
less than x .
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Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence in
A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)
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Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1
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Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate?

O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)
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Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to
help us understand the structure better. For notational ease we add
∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i ] among
numbers less than A[j ] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i ] ≥ A[j ]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if
A[i ] < A[j ]

Output: LIS(n, n + 1)
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Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i ] ≥ A[j ]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if
A[i ] < A[j ]

Output: LIS(n, n + 1)
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Iterative algorithm

LIS-Iterative(A[1..n]):
A[n + 1] =∞
int LIS[0..n, 1..n + 1]
for (j = 1 to n + 1) do

LIS[0, j ] = 0

for (i = 1 to n) do

for (j = i + 1 to n)
If (A[i ] > A[j ]) LIS[i , j ] = LIS[i − 1, j ]
Else LIS[i , j ] = max{LIS[i − 1, j ], 1 + LIS[i − 1, i ]}

Return LIS[n, n + 1]

Running time: O(n2)
Space: O(n2)

Chandra Chekuri (UIUC) CS/ECE 374 22 Spring 2023 22 / 32



How to order bottom up computation?

C
S 

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j ) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j ) = LIS(i − 1, j ) if A[i ] > A[j ]

LIS(i , j ) = max{LIS(i − 1, j ), 1 + LIS(i − 1, i )} if A[i ] ≤ A[j ]
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How to order bottom up computation?

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1
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Two comments

Question: compute an optimum solution in addition to value?

Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different
recursion and optimizing one can obtain an O(n log n) time and
O(n) space algorithm. O(n log n) time is not obvious. Depends on
improving time by using data structures on top of dynamic
programming.
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Recursive Algorithm: Take 2

Definition

LISEnding(A[1..n]): length of longest increasing sub-sequence that
ends in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = max
i :A[i ]<A[n]

(
1 + LISEnding(A[1..i ])

)
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Example

Sequence: A[1..8] = 6, 3, 5, 2, 7, 8, 1, 9
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Recursive Algorithm: Take 2

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n − 1 do

if (A[i ] < A[n]) then

m = max
(
m, 1 + LIS ending alg(A[1..i ])

)
return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i ])

How many distinct sub-problems will LIS ending alg(A[1..n])
generate? O(n)

What is the running time if we memoize recursion? O(n2) since
each call takes O(n) time

How much space for memoization? O(n)
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Iterative Algorithm via Memoization

Compute the values LIS ending alg(A[1..i ]) iteratively in a bottom
up fashion.

LIS ending alg(A[1..n]):
Array L[1..n] (* L[i ] = value of LIS ending alg(A[1..i ]) *)

for i = 1 to n do
L[i ] = 1
for j = 1 to i − 1 do

if (A[j ] < A[i ]) do
L[i ] = max(L[i ], 1 + L[j ])

return L

LIS(A[1..n]):
L = LIS ending alg(A[1..n])
return the maximum value in L
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Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i ] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i ] = 1
for j = 1 to i − 1 do

if (A[j ] < A[i ]) do

L[i ] = max(L[i ], 1 + L[j ])
m = max(m, L[i ])

return m

Correctness: Via induction following the recursion
Running time: O(n2)
Space: Θ(n)

O(n log n) run-time achievable via better data structures.
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Example

Example

1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Longest increasing subsequence: 3, 5, 7, 8

1 L[i ] is value of longest increasing subsequence ending in A[i ]
2 Recursive algorithm computes L[i ] from L[1] to L[i − 1]

3 Iterative algorithm builds up the values from L[1] to L[n]
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Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of
distinct subproblems is small; polynomial in the original problem
size.

2 Estimate the number of subproblems, the time to evaluate each
subproblem and the space needed to store the value. This gives
an upper bound on the total running time if we use automatic
memoization.

3 Eliminate recursion and find an iterative algorithm to compute
the problems bottom up by storing the intermediate values in an
appropriate data structure; need to find the right way or order
the subproblem evaluation. This leads to an explicit algorithm.

4 Optimize the resulting algorithm further
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