
Turing Machines



“Most General” computer? 

• DFAs are simple model of computation.
– Accept only the regular languages.

• Is there a kind of computer that can accept any
language, or compute any function?

• Recall counting argument:
– { L |  L⊆ {0,1}* }   (just the set languages)

(a) countably infinite

(b) uncountably infinite

– {P :  P is a finite length computer program} is
(a) countably infinite

(b) uncountably infinite



Most General Computer

• If not all functions are computable, which are?

• Is there a “most general” model of computer?

• What languages can they recognize?



David Hilbert

• Early 1900s – crisis in math foundations
– attempts to formalize resulted in paradoxes, etc.

• 1920,  Hilbert’s Program:

“mechanize” mathematics

• Finite axioms, inference rules
turn crank, determine truth

needed: axioms consistent & complete



Kurt Gödel

• German logician, at age 25 (1931) proved:

“There are true statements that can’t be proved”  

(i.e., “no” to Hilbert)

• Shook the foundations of

– mathematics

– philosophy

– science

– everything



Alan Turing

• British mathematician

– cryptanalysis during WWII

– arguably, father of AI, Theory

– several books, movies

• Defined “computer”, “program”

and (1936) at age 23 provided foundations for 
investigating fundamental question of what is 
computable, what is not computable. 



• DFA with (infinite) tape.

• One move:   read, write, move, change state.



High-level Goals

• Church-Turing thesis: TMs are the most general 
computing devices. So far no counter example

• Every TM can be represented as a string. Think of 
TM as a program but in a very low-level language.

• Existence of Universal Turing Machine which is 
the model/inspiration for stored program 
computing. UTM can simulate any TM

• Implications for what can be computed and what 
cannot be computed



Formal Definition

M = (Q, Σ, Γ, δ, q0, B, qaccept, qreject), where:

• Q is a finite set of states

• Σ is a finite input alphabet

• δ as defined on next page

• Γ is a finite tape alphabet.  (Σ a subset of Γ)

• q0 is the initial state (in Q)

• B in Γ – Σ is the blank symbol

• qaccept, qreject are unique accept, reject states in Q



Transition Function

δ: Q x Γ  Q  x Γ x {L, R, S} 

current
state

symbol
scanned

new
state

symbol
to write

direction to
move on tape 

δ(q,a) = (p, b, L) 
from state q, on reading a:

go to state p

write b
move head Left  



Graphical Representation

δ(q,a) = (p, b, L) 

Note: we allow δ(q,a) to be undefined for some 
choices of q, a  (in which case, M “crashes”)

q p

a/b, L



ID:  Instantaneous Description

• Contains all necessary information to capture 
“state of the computation”

• Includes

– state q of M

– location of read/write head

– contents of tape from left edge to rightmost 
nonblank (or to head, whichever is rightmost)



ID:  Instantaneous Description

ID:  X1X2...Xi-1 q XiXi+1...Xn (q in Q,  Xi in Γ)



Relation “” on IDs

If  δ(q,Xi) = (p, Y, L), then

X1X2...Xi-1 q XiXi+1...Xn  X1X2...Xi-2 p Xi-1 Y Xi+1 

current ID next ID

If δ(q,Xi) is undefined, then there is no next ID
If M tries to move off left edge, there is no next ID

(in both cases, the machine “crashes”)  



Capturing many moves...

Define * as the reflexive, transitive closure of 

Thus, ID1 
* ID2 iff M, when run from ID1, 

necessarily reaches ID2 after some finite 
number of moves.

Initial ID:  q0w    (more often, assume ... $q0w)

Accepting ID:  α1 qaccept α2 for any α1, α2  in Γ*

(reaches the accepting state with any random junk left on the tape)



Definition of Acceptance

M accepts w iff for some α1,α2  in Γ*,

q0w  * α1 qaccept α2

M accepts if at any time it enters the accept state

Regardless of whether or not

it has scanned all of the input

it has moved back and forth many times

it has completely erased or replaced w on the tape

L(M) = {w | M accepts w}



Non-accepting computation

M doesn’t accept w if any of the following occur:

• M enters qreject

• M moves off left edge of tape

• M has no applicable next transition

• M continues computing forever

If M accepts – we can tell:  it enters qaccept

If M doesn’t accept – we may not be able to tell

(c.f. “Halting problem” – later)



“Recursive” vs “Recursively Enumerable”

• Recursively Enumerable (r.e.) Languages:
= {L | there is a TM M such that L(M) = L}

• Recursive Languages   (also called “decidable”)

= {L | there is a TM M that halts for all w in Σ* 

and such that  L(M) = L }

Recursive languages:  nice;  run M on w and it will 
eventually enter either qaccept or qreject

r.e. languages: not so nice;  can know if w in L, but not 
necessarily if w is not in L.



Fundamental Questions

• Which languages are r.e.?  

• Which are recursive?

• What is the difference?

• What properties make a language decidable?



Machine accepting {0n1n | n ≥ 1}

mark 
0

accept

find &
mark 1

check
for 1’s

0/0’, R 1/1’, L

0/0, R
1’/1’, R

1’/1’, L
0/0, L

0’/0’, R

blank 

1’/1’, R

1’/1’, R

(This technique is known as “checking off symbols”)

find
next 0



Machine accepting {0n1n | n ≥ 1}

mark 
0

accept

find &
mark 1

check
for 1’s

0/0’, R 1/1’, L

0/0, R
1’/1’, R

1’/1’, L
0/0, L

0’/0’, R

blank 

1’/1’, R

1’/1’, R

(This technique is known as “checking off symbols”)

find
next 0



Machine accepting {anbncn | n ≥ 1}

mark 
a

accept

find &
mark b

find &
mark c

find
next a

check
for b’s

check
for c’s

a/A, R b/B, R c/C, L

a/a, R
B/B, R

b/b, R
C/C, R

C/C, L
b/b, L
B/B, L
a/a, L

A/A, R

C/C, R blank 

B/B, R

B/B, R C/C, R

(This technique is known as “checking off symbols”)



Machine to add two n-bit numbers
(“high-level” description)

• Assume input is $a1a2...an#b1b2...bn

• Pre-process phase

– sweep right, replacing 0 with 0’ and 1 with 1’

• Main loop:

– erase last bit bi, and remember it

– move left to corresponding bit ai

– add the bits, plus carry, overwrite ai with answer

– remember carry, move right to next (last) bit bi-1



$10011#11001

$1’0’0’1’1’#1’1’0’0’1’

$1’0’0’1’1’#1’1’0’0’1’

$1’0’0’1’1’#1’1’0’0’

$1’0’0’1’1’#1’1’0’0’

$1’0’0’1’1’#1’1’0’0’

$1’0’0’1’1’#1’1’0’0’

$1’0’0’1’1’#1’1’0’0’

$1’0’0’1’1’#1’1’0’0’

b = 1
c = 0

$1’0’0’1’0#1’1’0’0’

$1’0’0’1’0#1’1’0’0’

c = 1

$1’0’0’1’0#1’1’0’0’

$1’0’0’1’0#1’1’0’0’

$1’0’0’1’0#1’1’0’0’

$1’0’0’1’0#1’1’0’0’

$1’0’0’1’0#1’1’0’
b = 0
c = 1

$1’0’0’1’0#1’1’0’

$1’0’0’1’0#1’1’0’

$1’0’0’1’0#1’1’0’

$1’0’0’00#1’1’0’

$1’0’0’00#1’1’0’

c = 1

etc

Program Trace (some missing steps)



Computing Functions with TMs

• number n represented in unary by 0n

(well, really 0n+1 so we can represent 0...)

• M(n) definition:   “output of M on input n”:
IF q00n 


* qhalt 0m then M(n) = m.

• Every TM M computes some function 
fM :  N  N  U  {undefined}.

• Functions with multiple inputs and outputs:

M(x,y,z) = (r,s) means q00x#0y#0z 


* qhalt 0r#0s



“Easily” Computed Functions

• addition

• multiplication

• subtraction (max {0, x-y})

• any function you have an “algorithm” for...



Computable Functions

• A (partial) function f: N N U {undefined} is said 
to be computable iff for some TM M, 

for all x in N,  f(x) = M(x) when f(x) is defined
“f is a (partial) recursive function)”

• A function f: N N is a total recursive function
iff for all x in N,  f(x) = M(x) for every x. 

• If M computes a partial recursive function, it may 
not halt on some inputs.  If M computes a total 
recursive function, it must halt for all inputs.



Why only f: N  N ?

Q:  What about negatives, rationals, reals?

A:  We can encode anything as a natural 
number.  

• -5:  100000

• p/q:  0p110q,  (p/q) + (a/b)  as  0pb+aq110bq

• reals to given precision, or symbolically

• Intuition:  ANY function can be coded as a 
function from N to N



Some TM programming tricks

• checking off symbols

• shifting over

• using finite control memory

• subroutine calls



“Extensions” of TMs

• 2-way infinite tape
• multiple tracks
• multiple tapes
• multi-dimensional TMs
• nondeterministic TMs
• --- bells & whistles

Goal:  
Convince you of the power of the basic model



Checking off symbols

• Use additional tape symbols to represent a 
“checked-off” character.

• E.g., for each symbol a in Γ, also include “a✓” 

to represent a marked a.  

• We essentially did this using A for checked a, 
or 0’ for checked 0, in our previous examples.



Shifting over

• Sometimes need extra cells

• Can shift-over by any number of cells

– Shift-by-k:  Use states to remember previous |Γ|k

symbols:

b1b2...bk

a/b1 , R

b2...bk-1a

plus states to begin and end the process



Implication of Shifting

• Can assume without loss of generality that 
input is in the form $w where $ is a special 
symbol at start of input and not used 
anywhere else

• With above assumption can avoid the issue of 
crashing because of moving off the left of the 
tape



Using finite control

• just like DFAs

• can use tuples to store different types of info

• E.g.,  {anbncn | n = 1 (mod 4) and n = 2 (mod 7)}

States:  (q, i, j) where:

q:  state from TM for {anbncn | n ≥ 1}

i:   counter mod 4

j: counter mod 7

etc.

In general, can store any finite information in states



Subroutine calls

• soon



“Extensions” of TMs: 2-way infinite tape

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

Simulate with 1-way infinite tape...

0 1 -1 2 -2 3 -3 4 -4 5 -5 6 . . .

Must modify transitions appropriately
• remember in finite control if negative or positive
• if positive,  R  RR; L  LL
• if negative, R  LL; L  RR
• must mark left edge & deal with 0 cell differently



Extension: multiple tracks
0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape 

M can address any particular track in the cell it is scanning

4 tracks

0

$

a

1

1

b

1

0

b

2

0

0

c

1

a a a

Can simulate 4 tracks with a single track machine, using extra “stacked” characters:

single
character



Multiple tracks
0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape 

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)   

4 tracks

Then in M’ δ(q,        ) = (p,       ,  R) 
x

0

y

z

x

0

y

1

for every x, y, z in Γ

“If in state q reading 0 on 
second track, then go to 
state p, write 1 on fourth 
track, and move right”



Extension: multiple tapes

k-tape TM

• k different (2-way infinite) tapes

• k different independently controllable heads

• input initially on tape 1;   tapes 2, 3, ..., k, blank.

• single move:

– read symbols under all heads

– print (possibly different) symbols under heads

– move all heads (possibly different directions)

– go to new state



k-tape TM transition function

δ(q,a1, a2,... ak) = (p, b1,b2, ... bk, D1, D2, ... Dk) 

Symbols scanned on 
the k different tapes

Symbols to be written 
on the k different tapes

Directions to be moved 
(Di is one of  L, R, S)

Utility of multiple tapes

makes programming a whole lot easier

$ 1 0 0 1 0 # 1 0 0 1 0

is input string of form w#w ?



Ω(n2) steps provably required

≈ 3n/2 steps easily programmed



Can’t compute more with k tapes 

Theorem:  If L is accepted by a k-tape TM M, 
then L is accepted by some 1-tape TM M’.

Intuition:  M’ uses 2k tracks to simulate M

BUT....
M has k heads!

How can M’ be in 
k places at once?



Snapshot of simulation  (k = 2)

0 1 1 0 1

1 1 1 0 1 0

M

head 1

head 2

0 1 1 0 1

✓

1 1 1 0 1 0

✓

M’

Track 2i-1 holds tape i.    Track 2i holds position of head i



To make a move, M’ does:

Phase 1:  Sweep from leftmost edge to 
rightmost “✓” on any track, noting symbols 
✓’ed, and what track they are on.  Save this 
info in finite control.

Now, M’ knows what move of M to make

Phase 2: Sweep from right to left edge 
implementing the move of M 



Thus, each move of M requires M’ to do a 
complete sweep across, and back.

Not hard to show that if M takes t steps to 
complete its computation, then M’ takes O( ) 
steps.

t2



Subroutine calls

Mechanism for M1 to “call” M2 on an argument

• Rename states so that M1 and M2 have no 
common states except qcall and qreturn

• Goal:  M1 calls from state qcall returns to qreturn

• Rename init. state of M2 as qcall ,halt state qreturn

• M1 sets up argument a1a2...an for M2 :

$ . . . . . . . # a1 a2 a3
. . an

M1 work space M2 work space



• M2 runs, and when done:

$ . . . . . . . # a1 a2 a3
. . an

M1 work space M2 work space

$ . . . . . . . # b1 b2 b3
. . bk

M1 work space
M2 returned value

qcall

qreturn



• Can be more elaborate, and return to 
specified state qj

$ . . . . # 1 0 0 1 # a1
. . an

M1 saved 
computation

binary for j =  9
(desired return state)

M2 computation

• qreturn now goes to special sequence of states 
designed to read binary 1011 (or whatever) 
and then transition to state 9 (or whatever)

- This can actually be done with a DFA


