CS/ECE 374: Algorithms & Models of Computation

Proving Non-regularity

Lecture 6
February 2, 2023

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

• Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding. Or think of regular expressions which are easy to view as strings.

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding. Or think of regular expressions which are easy to view as strings.
- Hence number of regular languages is countably infinite

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding. Or think of regular expressions which are easy to view as strings.
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding. Or think of regular expressions which are easy to view as strings.
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

$$L = \{0^k 1^k \mid k \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

$$L = \{0^k 1^k \mid k \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

$$L = \{0^k 1^k \mid k \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

Spring 2023

$$L = \{0^{k}1^{k} \mid k \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

Intution: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

$$L = \{0^k 1^k \mid k \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

Intution: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Spring 2023

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What is the behavior of M on these strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What is the behavior of M on these strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^i 1^i$ but then it will also accept $0^j 1^i$ where $i \neq j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of n+1 strings.

What is the behavior of M on these strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^i 1^i$ but then it will also accept $0^j 1^i$ where $i \neq j$. This contradicts the fact that M accepts L. Thus, there is no DFA for L.

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. In other words either $xw \in L$, $yw \not\in L$ or $xw \not\in L$, $yw \in L$.

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. In other words either $xw \in L$, $yw \not\in L$ or $xw \not\in L$, $yw \in L$.

x, y are indistinguishable with respect to L if there is no such w.

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. In other words either $xw \in L$, $yw \not\in L$ or $xw \not\in L$, $yw \in L$.

x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \geq 0\}$

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. In other words either $xw \in L$, $yw \not\in L$ or $xw \not\in L$, $yw \in L$.

x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \geq 0\}$

Example: 000 and 0000 are indistinguishable with respect to the language $L = \{ w \mid w \text{ has } 00 \text{ as a substring} \}$

Definition

For a language L over Σ and two strings $x,y\in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w\in \Sigma^*$ such that exactly one of xw,yw is in L. In other words either $xw\in L,yw\not\in L$ or $xw\not\in L,yw\in L$.

x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \geq 0\}$

Example: 000 and 0000 are indistinguishable with respect to the language $L = \{ w \mid w \text{ has } 00 \text{ as a substring} \}$

Important: Indistiguishability is with respect to a specific language

Wee Lemma

Lemma

Suppose $\mathbf{L} = \mathbf{L}(\mathbf{M})$ for some DFA $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, s, \mathbf{A})$ and suppose \mathbf{x}, \mathbf{y} are distinguishable with respect to \mathbf{L} . Then $\delta^*(s, \mathbf{x}) \neq \delta^*(s, \mathbf{y})$.

Wee Lemma

Lemma

Suppose $\mathbf{L} = \mathbf{L}(\mathbf{M})$ for some DFA $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, s, \mathbf{A})$ and suppose \mathbf{x}, \mathbf{y} are distinguishable with respect to \mathbf{L} . Then $\delta^*(s, \mathbf{x}) \neq \delta^*(s, \mathbf{y})$.

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If $\delta^*(s, x) = \delta^*(s, y)$ then M will either accept both the strings xw, yw, or reject both. But exactly one of them is in L, a contradiction.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every pair of distinct strings $x, y \in F$ are distinguishable.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every pair of distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \ge 0\}$.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every pair of distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \ge 0\}$.

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Proof of Theorem

Theorem

Suppose \mathbf{F} is a fooling set for \mathbf{L} . If \mathbf{F} is finite then there is no DFA \mathbf{M} that accepts \mathbf{L} with less than $|\mathbf{F}|$ states.

Proof.

Suppose there is a DFA $M=(Q,\Sigma,\delta,s,A)$ that accepts L. Let |Q|=n.

Proof of Theorem

Theorem

Suppose \mathbf{F} is a fooling set for \mathbf{L} . If \mathbf{F} is finite then there is no DFA \mathbf{M} that accepts \mathbf{L} with less than $|\mathbf{F}|$ states.

Proof.

Suppose there is a DFA $M=(Q,\Sigma,\delta,s,A)$ that accepts L. Let |Q|=n.

If n < |F| then by pigeon hole principle there are two strings $x, y \in F$, $x \neq y$ such that $\delta^*(s, x) = \delta^*(s, y)$ but x, y are distinguishable.

Proof of Theorem

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Proof.

Suppose there is a DFA $M=(Q,\Sigma,\delta,s,A)$ that accepts L. Let |Q|=n.

If n < |F| then by pigeon hole principle there are two strings $x, y \in F$, $x \neq y$ such that $\delta^*(s, x) = \delta^*(s, y)$ but x, y are distinguishable.

Implies that there is w such that exactly one of xw, yw is in L. However, M's behaviour on xw and yw is exactly the same and hence M will accept both xw, yw or reject both. A contradiction.

Infinite Fooling Sets

Theorem

Suppose \mathbf{F} is a fooling set for \mathbf{L} . If \mathbf{F} is finite then there is no DFA \mathbf{M} that accepts \mathbf{L} with less than $|\mathbf{F}|$ states.

Corollary

If **L** has an infinite fooling set **F** then **L** is not regular.

Infinite Fooling Sets

Theorem

Suppose \mathbf{F} is a fooling set for \mathbf{L} . If \mathbf{F} is finite then there is no DFA \mathbf{M} that accepts \mathbf{L} with less than $|\mathbf{F}|$ states.

Corollary

If **L** has an infinite fooling set **F** then **L** is not regular.

Proof.

Suppose for contradiction that L = L(M) for some DFA M with n states.

Any subset F' of F is a fooling set. (Why?) Pick $F' \subseteq F$ arbitrarily such that |F'| > n. By preceding theorem, we obtain a contradiction.

• $\{0^k 1^k \mid k \ge 0\}$

10

- $\{0^k 1^k \mid k \ge 0\}$
- {bitstrings with equal number of 0s and 1s}

10

- $\{0^k 1^k \mid k \ge 0\}$
- {bitstrings with equal number of 0s and 1s}
- $\bullet \ \{0^k 1^\ell \mid k \neq \ell\}$

- $\{0^k 1^k \mid k \ge 0\}$
- {bitstrings with equal number of 0s and 1s}
- $\bullet \ \{0^k 1^\ell \mid k \neq \ell\}$
- $\{0^{k^2} \mid k \ge 0\}$

Examples

- $\{0^k 1^k \mid k \ge 0\}$
- {bitstrings with equal number of 0s and 1s}
- $\bullet \ \{0^{k}1^{\ell} \mid k \neq \ell\}$
- $\{0^{k^2} \mid k \geq 0\}$
- $\{w \mid w \text{ is valid Python program}\}$

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k+1 states.

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k+1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k+1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

Why?

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k+1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

Why?

• Suppose $a_1 a_2 \dots a_k$ and $b_1 b_2 \dots b_k$ are two distinct bitstrings of length k

- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{i-1}$ is a distinguishing suffix for the two strings

How to pick a fooling set

How do we pick a fooling set *F*?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L.
 For example if L = {0^k1^k | k ≥ 0} do not pick 1 and 10 (say). Why?
- Instead of picking an infinite fooling set one can also show that for every n > 0 there is a fooling set F_n such that $|F_n| \ge n$. See Chandra's notes on the webpage for why this may help in several cases.

Part I

Non-regularity via closure properties

 $L = \{ \text{bitstrings with equal number of 0s and 1s} \}$

$$L' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

 $L = \{ \text{bitstrings with equal number of 0s and 1s} \}$

$$L' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$L' = L \cap L(0*1*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

$$L' = \{0^k 1^k \mid k \ge 0\}$$

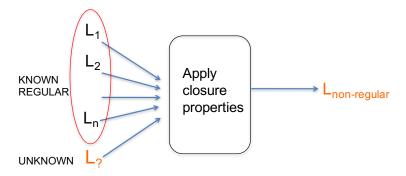
Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$\mathbf{L'} = \mathbf{L} \cap \mathbf{L}(0^*1^*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose L is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, L' also would be regular. But we know L' is not regular, a contradiction.

General recipe:



Proving non-regularity: Summary

- DFAs have fixed memory. Any language that requires memory that grows with input size is not regular. Not always easy to tell!
- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an
 easier proof technique to apply, but not as general as the fooling
 set technique.

Part II

Myhill-Nerode Theorem (Optional)

Indistinguishability

Recall:

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

Indistinguishability

Recall:

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

Claim

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

Therefore, \equiv_L partitions Σ^* into a collection of equivalence classes X_1, X_2, \ldots ,

Claim

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

Therefore, \equiv_L partitions Σ^* into a collection of equivalence classes.

Claim

Let x, y be two distinct strings. If x, y belong to the same equivalence class of \equiv_{L} then x, y are indistinguishable. Otherwise they are distinguishable.

Corollary

If \equiv_L is finite with \mathbf{n} equivalence classes then there is a fooling set \mathbf{F} of size \mathbf{n} for \mathbf{L} . If \equiv_L is infinite then there is an infinite fooling set for \mathbf{L} .

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is is regular if and only if $\equiv_{\mathbf{L}}$ has a finite number of equivalence classes. If $\equiv_{\mathbf{L}}$ is finite with \mathbf{n} equivalence classes then there is a DFA \mathbf{M} accepting \mathbf{L} with exactly \mathbf{n} states and this is the minimum possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M' such that L(M) = L(M') and M' has the fewest possible states among all such DFAs.