# CS/ECE 374: Algorithms & Models of Computation

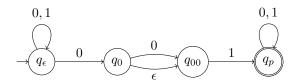
# Non-deterministic Finite Automata (NFAs)

Lecture 4
January 26, 2023

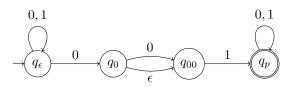
## Part I

## **NFA** Introduction

# Non-deterministic Finite State Automata (NFAs)



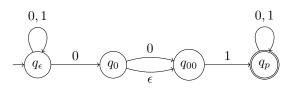
# Non-deterministic Finite State Automata (NFAs)



#### Differences from DFA

- From state q on same letter  $a \in \Sigma$  multiple possible states
- No transitions from q on some letters
- ε-transitions!

# Non-deterministic Finite State Automata (NFAs)

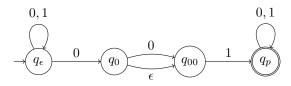


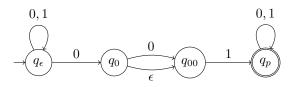
#### Differences from DFA

- From state q on same letter  $a \in \Sigma$  multiple possible states
- No transitions from q on some letters
- ϵ-transitions!

#### **Questions:**

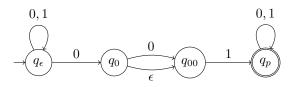
- Is this a "real" machine?
- What does it do?



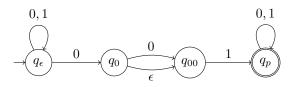


Machine on input string w from state q can lead to  $set\ of\ states$  (could be empty)

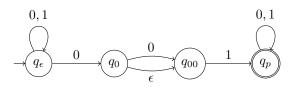
ullet From  $oldsymbol{q}_{\epsilon}$  on 1



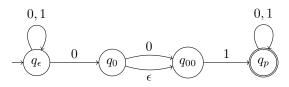
- ullet From  $oldsymbol{q}_{\epsilon}$  on 1
- From  $q_{\epsilon}$  on 0



- ullet From  $oldsymbol{q}_{\epsilon}$  on 1
- From  $q_{\epsilon}$  on 0
- ullet From  $oldsymbol{q}_0$  on  $oldsymbol{\epsilon}$

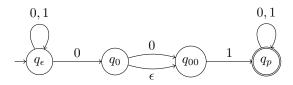


- ullet From  $oldsymbol{q}_{\epsilon}$  on 1
- From  $q_{\epsilon}$  on 0
- ullet From  $oldsymbol{q}_0$  on  $oldsymbol{\epsilon}$
- From  $q_{\epsilon}$  on 01



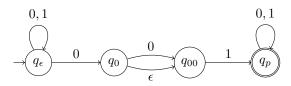
- ullet From  $oldsymbol{q}_{\epsilon}$  on 1
- From  $q_{\epsilon}$  on 0
- ullet From  $oldsymbol{q}_0$  on  $oldsymbol{\epsilon}$
- From  $q_{\epsilon}$  on 01
- From **q**<sub>00</sub> on 00

## NFA acceptance: informal



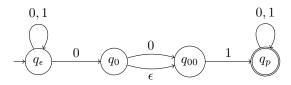
**Informal definition:** A NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

## NFA acceptance: informal

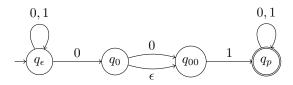


**Informal definition:** A NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

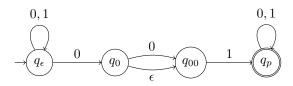
The language accepted (or recognized) by a NFA N is denote by L(N) and defined as:  $L(N) = \{w \mid N \text{ accepts } w\}$ .



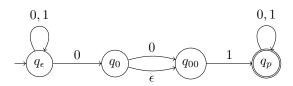
• Is 01 accepted?



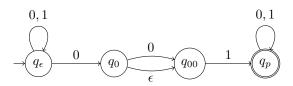
- Is 01 accepted?
- Is 001 accepted?



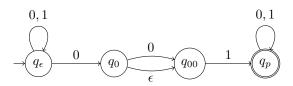
- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?



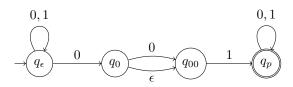
- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1\*01 accepted?



- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1\*01 accepted?
- What is the language accepted by N?



- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1\*01 accepted?
- What is the language accepted by N?



- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1\*01 accepted?
- What is the language accepted by N?

**Comment:** Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.

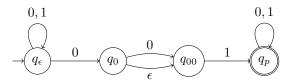
## **Formal Tuple Notation**

#### **Definition**

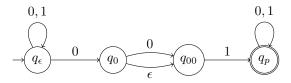
A non-deterministic finite automata (NFA)  $N = (Q, \Sigma, \delta, s, A)$  is a five tuple where

- Q is a finite set whose elements are called states,
- $\bullet$   $\Sigma$  is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathcal{P}(Q)$  is the transition function (here  $\mathcal{P}(Q)$  is the power set of Q),
- $s \in Q$  is the start state,
- $A \subseteq Q$  is the set of accepting/final states.

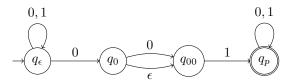
 $\delta(q, a)$  for  $a \in \Sigma \cup \{\epsilon\}$  is a susbet of Q — a set of states.



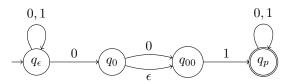




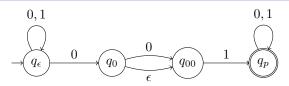
 $Q = \{q_{\epsilon}, q_0, q_{00}, q_{p}\}$ 



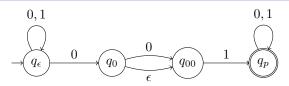
- $ullet Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\bullet$   $\Sigma =$



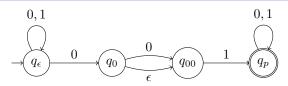
- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$



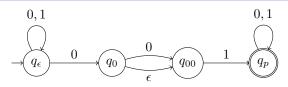
- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$



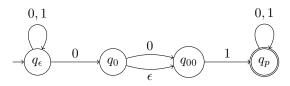
- $extbf{Q} = \{q_{\epsilon}, q_0, q_{00}, q_{p}\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$
- s =



- $extbf{Q} = \{q_{\epsilon}, q_0, q_{00}, q_{p}\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$
- $s = q_{\epsilon}$



- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$
- $\bullet$   $s=q_{\epsilon}$
- **A** =



- $Q = \{q_{\epsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$
- $s = q_{\epsilon}$
- $\bullet A = \{q_p\}$

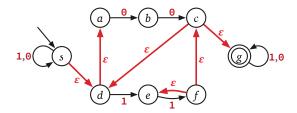
Given NFA  $N = (Q, \Sigma, \delta, s, A)$ ,  $\delta(q, a)$  is a set of states that N can go to from q on reading  $a \in \Sigma \cup \{\epsilon\}$ .

Given NFA  $N = (Q, \Sigma, \delta, s, A)$ ,  $\delta(q, a)$  is a set of states that N can go to from q on reading  $a \in \Sigma \cup \{\epsilon\}$ .

Want transition function  $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$  where  $\delta^*(q, w)$  is the set of states that can be reached by N on input w starting in state q.

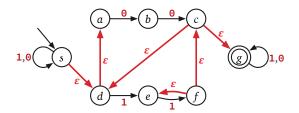
#### **Definition**

For NFA  $N=(Q,\Sigma,\delta,s,A)$  and  $q\in Q$  the  $\epsilon$ -reach(q) is the set of all states that q can reach using only  $\epsilon$ -transitions.



#### **Definition**

For NFA  $N=(Q,\Sigma,\delta,s,A)$  and  $q\in Q$  the  $\epsilon$ -reach(q) is the set of all states that q can reach using only  $\epsilon$ -transitions.



- $\epsilon$ reach(s) =
- $\epsilon$ reach(b) =
- $\epsilon$ reach(f) =

#### **Definition**

For NFA  $N=(Q,\Sigma,\delta,s,A)$  and  $q\in Q$  the  $\epsilon$ -reach(q) is the set of all states that q can reach using only  $\epsilon$ -transitions.

#### **Definition**

Inductive definition of  $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ :

$$ullet$$
 if  $oldsymbol{w}=oldsymbol{\epsilon}$ ,  $oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{w})=oldsymbol{\epsilon}$ reach $(oldsymbol{q})$ 

#### **Definition**

For NFA  $N=(Q,\Sigma,\delta,s,A)$  and  $q\in Q$  the  $\epsilon$ -reach(q) is the set of all states that q can reach using only  $\epsilon$ -transitions.

#### **Definition**

Inductive definition of  $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ :

- if  $\mathbf{w} = \epsilon$ ,  $\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}(\mathbf{q})$
- if w = a where  $a \in \Sigma$  $\delta^*(q, a) = \bigcup_{p \in \text{creach}(q)} (\bigcup_{r \in \delta(p, a)} \epsilon \text{reach}(r))$

# **Extending the transition function to strings**

## **Definition**

For NFA  $N=(Q,\Sigma,\delta,s,A)$  and  $q\in Q$  the  $\epsilon$ -reach(q) is the set of all states that q can reach using only  $\epsilon$ -transitions.

#### **Definition**

Inductive definition of  $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ :

- ullet if  $oldsymbol{w}=oldsymbol{\epsilon}$ ,  $oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{w})=oldsymbol{\epsilon}$ reach $(oldsymbol{q})$
- if w=a where  $a\in \Sigma$   $\delta^*(q,a)=\cup_{p\in\epsilon{\sf reach}(q)}(\cup_{r\in\delta(p,a)}\epsilon{\sf reach}(r))$
- if w = ax,  $\delta^*(q, w) = \bigcup_{p \in \delta^*(q, a)} \delta^*(p, x)$

# Formal definition of language accepted by N

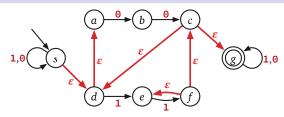
## **Definition**

A string w is accepted by NFA N if  $\delta_N^*(s, w) \cap A \neq \emptyset$ .

## Definition

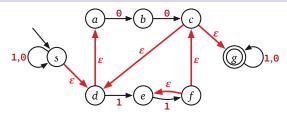
The language L(N) accepted by a NFA  $N = (Q, \Sigma, \delta, s, A)$  is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$



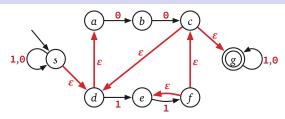
What is:

$$\bullet$$
  $\delta^*(s,\epsilon)$ 



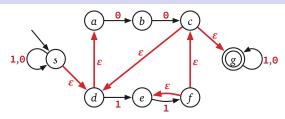
#### What is:

- $\bullet$   $\delta^*(s,\epsilon)$
- $\delta^*(s,0)$



#### What is:

- $\bullet$   $\delta^*(s,\epsilon)$
- $\delta^*(s,0)$
- $\delta^*(c,0)$



#### What is:

- $\bullet$   $\delta^*(s,\epsilon)$
- $\delta^*(s,0)$
- $\delta^*(c,0)$
- $\delta^*(b, 00)$

# Another definition of computation

## **Definition**

A state p is reachable from q on w denoted by  $q \xrightarrow{w}_{N} p$  if there exists a sequence of states  $r_0, r_1, \ldots, r_k$  and a sequence  $x_1, x_2, \ldots, x_k$  where  $x_i \in \Sigma \cup \{\epsilon\}$  for each i, such that:

- $r_0 = q$ ,
- for each i,  $r_{i+1} \in \delta(r_i, x_{i+1})$ ,
- $r_k = p$ , and
- $\bullet \ \mathbf{w} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \mathbf{x}_k.$

### **Definition**

$$\delta^* N(q, w) = \{ p \in Q \mid q \xrightarrow{w}_N p \}.$$

# Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics
- Michael Rabin and Dana Scott introduced non-determinism in a 1959 paper titled "Finite Automata and Their Decision Problems". They won the Turing Award in 1976 partly for this contribution.

Several interpretations of non-determinism. Hard to understand at the outset. Over time you will get used to it and appreciate the conceptual value.

## Part II

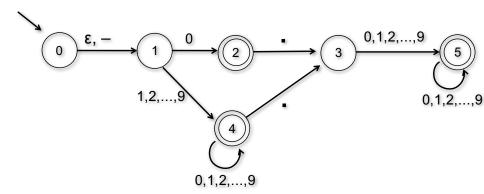
# **Constructing NFAs**

## **DFAs and NFAs**

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Strings that represent decimal numbers.

Strings that represent decimal numbers.



• {strings that contain CS374 as a substring}

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

 $L_k = \{ \text{bitstrings that have a 1 } k \text{ positions from the end} \}$ 

# A simple transformation

#### **Theorem**

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- ullet N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

## Part III

# **Closure Properties of NFAs**

# Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

## Closure under union

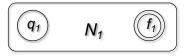
#### **Theorem**

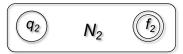
For any two NFAs  $N_1$  and  $N_2$  there is a NFA N such that  $L(N) = L(N_1) \cup L(N_2)$ .

## Closure under union

#### **Theorem**

For any two NFAs  $N_1$  and  $N_2$  there is a NFA N such that  $L(N) = L(N_1) \cup L(N_2)$ .





## Closure under concatenation

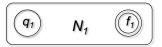
#### **Theorem**

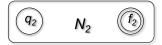
For any two NFAs  $N_1$  and  $N_2$  there is a NFA N such that  $L(N) = L(N_1) \cdot L(N_2)$ .

## Closure under concatenation

#### Theorem

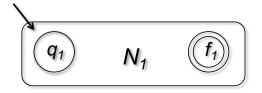
For any two NFAs  $N_1$  and  $N_2$  there is a NFA N such that  $L(N) = L(N_1) \cdot L(N_2)$ .





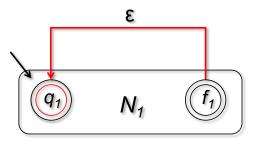
#### **Theorem**

For any NFA  $N_1$  there is a NFA N such that  $L(N) = (L(N_1))^*$ .



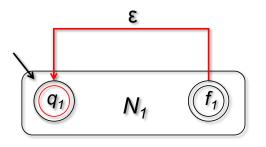
#### **Theorem**

For any NFA  $N_1$  there is a NFA N such that  $L(N) = (L(N_1))^*$ .



#### **Theorem**

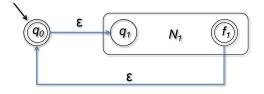
For any NFA  $N_1$  there is a NFA N such that  $L(N) = (L(N_1))^*$ .



Does not work! Why?

#### **Theorem**

For any NFA  $N_1$  there is a NFA N such that  $L(N) = (L(N_1))^*$ .



## Part IV

# NFAs capture Regular Languages

# Regular Languages Recap

## Regular Languages

```
\emptyset regular \{\epsilon\} regular \{a\} regular for a \in \Sigma R_1 \cup R_2 regular if both are R_1R_2 regular if both are R^* is regular if R is
```

## Regular Expressions

```
\emptyset denotes \emptyset

\epsilon denotes \{\epsilon\}

a denote \{a\}

r_1 + r_2 denotes R_1 \cup R_2

r_1r_2 denotes R_1R_2

r_1^* denote R_1^*
```

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

#### **Theorem**

For every regular language L there is an NFA N such that L = L(N).

## Proof strategy:

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Base cases:  $\emptyset$ ,  $\{\epsilon\}$ ,  $\{a\}$  for  $a \in \Sigma$ 

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

#### Inductive cases:

•  $r_1$ ,  $r_2$  regular expressions and  $r = r_1 + r_2$ .

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

#### Inductive cases:

•  $r_1$ ,  $r_2$  regular expressions and  $r = r_1 + r_2$ . By induction there are NFAs  $N_1$ ,  $N_2$  s.t  $L(N_1) = L(r_1)$  and  $L(N_2) = L(r_2)$ .

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

#### Inductive cases:

•  $r_1$ ,  $r_2$  regular expressions and  $r=r_1+r_2$ . By induction there are NFAs  $N_1$ ,  $N_2$  s.t  $L(N_1)=L(r_1)$  and  $L(N_2)=L(r_2)$ . We have already seen that there is NFA N s.t  $L(N)=L(N_1)\cup L(N_2)$ , hence L(N)=L(r)

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

#### Inductive cases:

- $r_1$ ,  $r_2$  regular expressions and  $r=r_1+r_2$ . By induction there are NFAs  $N_1$ ,  $N_2$  s.t  $L(N_1)=L(r_1)$  and  $L(N_2)=L(r_2)$ . We have already seen that there is NFA N s.t  $L(N)=L(N_1)\cup L(N_2)$ , hence L(N)=L(r)
- $\bullet r = r_1 \bullet r_2.$

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

#### Inductive cases:

- $r_1$ ,  $r_2$  regular expressions and  $r=r_1+r_2$ . By induction there are NFAs  $N_1$ ,  $N_2$  s.t  $L(N_1)=L(r_1)$  and  $L(N_2)=L(r_2)$ . We have already seen that there is NFA N s.t  $L(N)=L(N_1)\cup L(N_2)$ , hence L(N)=L(r)
- $r = r_1 \cdot r_2$ . Use closure of NFA languages under concatenation

- ullet For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

#### Inductive cases:

- $r_1$ ,  $r_2$  regular expressions and  $r=r_1+r_2$ . By induction there are NFAs  $N_1$ ,  $N_2$  s.t  $L(N_1)=L(r_1)$  and  $L(N_2)=L(r_2)$ . We have already seen that there is NFA N s.t  $L(N)=L(N_1)\cup L(N_2)$ , hence L(N)=L(r)
- $r = r_1 \cdot r_2$ . Use closure of NFA languages under concatenation
- $r = (r_1)^*$ .

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

#### Inductive cases:

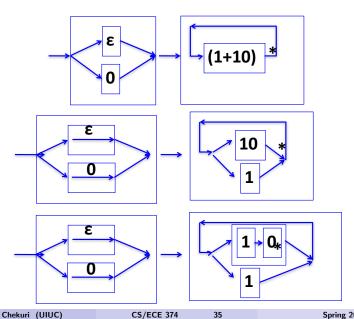
- $r_1$ ,  $r_2$  regular expressions and  $r=r_1+r_2$ . By induction there are NFAs  $N_1$ ,  $N_2$  s.t  $L(N_1)=L(r_1)$  and  $L(N_2)=L(r_2)$ . We have already seen that there is NFA N s.t  $L(N)=L(N_1)\cup L(N_2)$ , hence L(N)=L(r)
- $r = r_1 \cdot r_2$ . Use closure of NFA languages under concatenation
- $r = (r_1)^*$ . Use closure of NFA languages under Kleene star

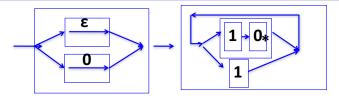
$$(\epsilon+0)(1+10)^*$$

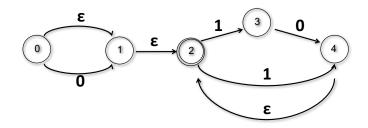
$$\rightarrow (\epsilon+0) \rightarrow (1+10)^*$$

$$\downarrow 0$$

$$\downarrow (1+10)$$







Final NFA simplified slightly to reduce states

# **Summary and Skills**

NFAs introduce and showcase the power of *non-determinism* in computation. It is a mathematical construct. Important to digest the formal definitions.

- How does the definition of an NFA differ from that of a DFA?
- What is the definiton of L(N) where N is an NFA?
- In particular, what is the formal definition of the transition function  $\delta$  and the transition function  $\delta^*$ ?
- What is an algorithm to check whether a string w is accepted by an NFA N?
- What is an algorithm to chek whether a string w is not accepted by an NFA N?

NFAs generalize DFAs. Why do NFAs generalize regular expressions? Thompson's algorithm to convert a regular expression to an NFA.

# **Summary and Skills**

## Designing NFAs for a language

- NFAs generalize DFAs
- Languages accepted by NFAs are closed under union, concatenation, and Kleene star. Hence NFAs also generalize regular expressions/languages.
- Non-determinism allows for "guess" and "verify" approach for computation and hence one can design simpler machines.
   Understanding this approach is necessary to use NFAs to show many non-trivial closure properties of regular languages.
- Can combining the power of the three preceding properties