CS/ECE 374: Algorithms \& Models of Computation

Regular Languages and Expressions
 Lecture 2
 January 19, 2023

Background

Fix some finite alphabet Σ.

- Σ^{*} is the set of all strings over Σ
- A language over Σ is a subset of strings. That is, $L \subseteq \Sigma^{*}$
- Σ^{*} is countably infinite. Set of all languages $=\mathcal{P}\left(\Sigma^{*}\right)$ is uncountably infinite
- Each machine/program can be described by a string. Hence set of machines/programs is countably infinite
- Implies many/most languages that are too "complex" for machines/programs

Background

Fix some finite alphabet Σ.

- Σ^{*} is the set of all strings over Σ
- A language over Σ is a subset of strings. That is, $L \subseteq \Sigma^{*}$
- Σ^{*} is countably infinite. Set of all languages $=\mathcal{P}\left(\Sigma^{*}\right)$ is uncountably infinite
- Each machine/program can be described by a string. Hence set of machines/programs is countably infinite
- Implies many/most languages that are too "complex" for machines/programs

Question: What languages are easy? What languages should we focus on? Can we classify them via various features?

Languages

Study of languages motivated by (among many others)

- linguistics and natural language understanding
- programming languages and logic
- computation and machines

Intution: As ability of a language to express/model increases the more complex/computationally hard it becomes.

Chomsky Hierarchy and Machines

Grammars
phrase structured
context sensitive
context free
regular expressions

All Languages

Machines

Turing machine (TMss)
linear bounded automata (LBAs)
pushdown automata (PDAs)
finite state automata (DFAs)

Part I

Regular Languages

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

- \emptyset is a regular language

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting \boldsymbol{a} as a string of length 1
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting \boldsymbol{a} as a string of length 1
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting \boldsymbol{a} as a string of length 1
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular
- If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting \boldsymbol{a} as a string of length 1
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular
- If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular

Regular Languages

A class of simple but very useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

- \emptyset is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular
- If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular

Regular languages are closed under the operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: $\{a b a\}$ or $\{a b b a b b a b\}$. Why?

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: $\{a b a\}$ or $\{a b b a b b a b\}$. Why?
Lemma
Every finite language L is regular.
Examples: $L=\{a, a b a a b, a b a\} . L=\{w| | w \mid \leq 100\}$. Why?

More Examples

- $\{w \mid w$ is a keyword in Python program $\}$
- $\{w \mid w$ is a valid date of the form mm/dd/yy $\}$
- $\{\boldsymbol{w} \mid \boldsymbol{w}$ describes a valid Roman numeral $\}$ $\{I, I I, I I I, I V, V, V I, V I I, V I I I, I X, X, X I, \ldots\}$.
- $\{w \mid w$ contains "CS374" as a substring $\}$.

Regular Languages

- How expressive are these languages?
- What can we use them for?
- What are limitations? That is, what can be not express as regular languages?

Part II

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
- text search (editors, Unix/grep, emacs)
- compilers: lexical analysis
- compact way to represent interesting/useful languages
- dates back to 50's: Stephen Kleene who has a star named after him.

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following: Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following: Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_{1} and r_{2} are regular expressions denoting languages R_{1} and R_{2} respectively then,

- $\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
- $\left(r_{1} r_{2}\right)$ denotes the language $R_{1} \boldsymbol{R}_{2}$
- $\left(r_{1}\right)^{*}$ denotes the language R_{1}^{*}

Regular Languages vs Regular Expressions

Regular Languages

\emptyset regular
$\{\epsilon\}$ regular
$\{a\}$ regular for $a \in \Sigma$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are R^{*} is regular if R is

Regular Expressions

\emptyset denotes \emptyset
ϵ denotes $\{\epsilon\}$
a denote $\{a\}$
$r_{1}+r_{2}$ denotes $R_{1} \cup R_{2}$
$r_{1} r_{2}$ denotes $R_{1} R_{2}$
r^{*} denote R^{*}

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

Regular Languages vs Regular Expressions

Regular Languages

\emptyset regular
$\{\epsilon\}$ regular
$\{a\}$ regular for $a \in \Sigma$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are R^{*} is regular if R is

Regular Expressions

\emptyset denotes \emptyset
ϵ denotes $\{\epsilon\}$
a denote $\{a\}$
$r_{1}+r_{2}$ denotes $R_{1} \cup R_{2}$
$r_{1} r_{2}$ denotes $R_{1} R_{2}$
r^{*} denote R^{*}

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

Examples: $(0+1)^{*}, 010^{*}+(110)^{*},(10+110)^{*}(11+10)$

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language! Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language! Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language! Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concat, + . Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language! Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concat, + . Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each of these operations.

Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language! Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concat, + . Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each of these operations.

Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.

- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then $L\left(r^{+}\right)=R^{+}$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language! Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concat, + . Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each of these operations.

Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.

- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then $L\left(r^{+}\right)=R^{+}$.
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to "understand" $L(r)$ (say by giving an English description)

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$:

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$:

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0:

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: \{\}

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$:

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alteranting 0 s and 1 s . Alternatively, strings with no two consecutive 0 s and no two conescutive 1 s

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alteranting 0 s and 1 s . Alternatively, strings with no two consecutive 0 s and no two conescutive 1 s
- $(\epsilon+0)(1+10)^{*}$:

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$: strings with number of 1 's divisible by 3
- Ø0: \{\}
- $(\epsilon+1)(01)^{*}(\epsilon+0)$: alteranting 0 s and 1 s . Alternatively, strings with no two consecutive 0 s and no two conescutive 1 s
- $(\epsilon+0)(1+10)^{*}$: strings without two consecutive 0 s.

Creating regular expressions

- bitstrings with the substring 001 or substring 100 ocurring as a substring

Creating regular expressions

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$

Creating regular expressions

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's

Creating regular expressions

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$

Creating regular expressions

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1 's

Creating regular expressions

- bitstrings with the substring 001 or substring 100 ocurring as a substring
one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1 's one answer: $0^{*} 1 r$ where r is solution to previous part

Creating regular expressions

- bitstrings with the substring 001 or substring 100 ocurring as a substring
one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1's one answer: $0^{*} 1 r$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring

Creating regular expressions

- bitstrings with the substring 001 or substring 100 ocurring as a substring
one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1's one answer: $0^{*} 1 r$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring one answer: $1^{*} 0^{*}\left(10^{+}\right)^{*}(1+\epsilon)$

Creating regular expressions

- bitstrings with the substring 001 or substring 100 ocurring as a substring
one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- bitstrings with an even number of 1 's one answer: $0^{*}+\left(0^{*} 10^{*} 10^{*}\right)^{*}$
- bitstrings with an odd number of 1's one answer: $0^{*} 1 r$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring one answer: $1^{*} 0^{*}\left(10^{+}\right)^{*}(1+\boldsymbol{\epsilon})$
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Regular expression identities

- $\boldsymbol{r}^{*} \boldsymbol{r}^{*}=\boldsymbol{r}^{*}$ meaning for any regular expression \boldsymbol{r},
$L\left(r^{*} r^{*}\right)=L\left(r^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Regular expression identities

- $\boldsymbol{r}^{*} \boldsymbol{r}^{*}=\boldsymbol{r}^{*}$ meaning for any regular expression \boldsymbol{r},
$L\left(r^{*} r^{*}\right)=L\left(r^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity?

Regular expression identities

- $\boldsymbol{r}^{*} \boldsymbol{r}^{*}=\boldsymbol{r}^{*}$ meaning for any regular expression \boldsymbol{r},
$L\left(r^{*} r^{*}\right)=L\left(r^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity? By induction. On what?

Regular expression identities

- $\boldsymbol{r}^{*} \boldsymbol{r}^{*}=\boldsymbol{r}^{*}$ meaning for any regular expression \boldsymbol{r},

$$
L\left(r^{*} r^{*}\right)=L\left(r^{*}\right)
$$

- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity? By induction. On what? Length of r since r is a string obtained from specific inductive rules.

A non-regular language and other closure properties

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

A non-regular language and other closure properties

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.
Theorem
L is not a regular language.

A non-regular language and other closure properties

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

Theorem

L is not a regular language.
How do we prove it?

A non-regular language and other closure properties

Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

Theorem

L is not a regular language.
How do we prove it?
Other questions:

- Suppose R_{1} is regular and R_{2} is regular. Is $R_{1} \cap R_{2}$ regular?
- Suppose R_{1} is regular is \bar{R}_{1} (complement of R_{1}) regular?

Summary and Skills

Regular languages and expressions defined inductively via simple base cases and three operations: union, concatenation, Kleene star

Skills:

- Given a laguage L described in English, design a regular expression r such that $L=L(r)$
- Given a regular expression r, give an English description of the language $L(r)$

Later:

- see equivalence with DFAs, NFAs
- technique to prove that languages are not regular

