CS/ECE 374: Algorithms & Models of Computation

Regular Languages and Expressions

Lecture 2 January 19, 2023

Background

Fix some finite alphabet Σ .

- \bullet Σ^* is the set of all strings over Σ
- ullet A language over Σ is a subset of strings. That is, ${m L} \subseteq \Sigma^*$
- Σ^* is countably infinite. Set of all languages $= \mathcal{P}(\Sigma^*)$ is uncountably infinite
- Each machine/program can be described by a string. Hence set of machines/programs is countably infinite
- Implies many/most languages that are too "complex" for machines/programs

Background

Fix some finite alphabet Σ .

- \bullet Σ^* is the set of all strings over Σ
- ullet A language over Σ is a subset of strings. That is, ${m L} \subseteq \Sigma^*$
- Σ^* is countably infinite. Set of all languages $= \mathcal{P}(\Sigma^*)$ is uncountably infinite
- Each machine/program can be described by a string. Hence set of machines/programs is countably infinite
- Implies many/most languages that are too "complex" for machines/programs

Question: What languages are easy? What languages should we focus on? Can we *classify* them via various features?

Languages

Study of languages motivated by (among many others)

- linguistics and natural language understanding
- programming languages and logic
- computation and machines

Intution: As ability of a language to *express/model* increases the more *complex/computationally hard* it becomes.

Chomsky Hierarchy and Machines

Grammars

phrase structured

context sensitive

context free

regular expressions

Machines

Turing machine (TMss)

linear bounded automata (LBAs)

pushdown automata (PDAs)

finite state automata (DFAs)

Part I

Regular Languages

A class of simple but very useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

∅ is a regular language

Spring 2023

A class of simple but very useful languages.

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language

A class of simple but very useful languages.

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1

A class of simple but very useful languages.

- ∅ is a regular language
- \bullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular

A class of simple but very useful languages.

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1 , L_2 are regular then L_1L_2 is regular

A class of simple but very useful languages.

- ∅ is a regular language
- \bullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1 , L_2 are regular then L_1L_2 is regular
- If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular

A class of simple but very useful languages.

- ∅ is a regular language
- \bullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1 , L_2 are regular then L_1L_2 is regular
- If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular

A class of simple but very useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- ∅ is a regular language
- ullet $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$; here we are interpreting a as a string of length 1
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular
- If L_1 , L_2 are regular then L_1L_2 is regular
- If L is regular, then $L^* = \bigcup_{n>0} L^n$ is regular

Regular languages are closed under the operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: $\{aba\}$ or $\{abbabbab\}$. Why?

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

More Examples

- $\{w \mid w \text{ is a keyword in Python program}\}$
- $\{w \mid w \text{ is a valid date of the form } mm/dd/yy\}$
- {w | w describes a valid Roman numeral}{I, II, III, IV, V, VI, VII, VIII, IX, X, XI, ...}.
- $\{w \mid w \text{ contains "CS374" as a substring}\}$.

- How expressive are these languages?
- What can we use them for?
- What are limitations? That is, what can be not express as regular languages?

Part II

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star named after him.

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following:

- Base cases:
 - Ø denotes the language Ø
 - ϵ denotes the language $\{\epsilon\}$.
 - a denote the language $\{a\}$.

Inductive Definition

A regular expression r over an alphabhe Σ is one of the following: Base cases:

- ∅ denotes the language ∅
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- (r_1r_2) denotes the language R_1R_2
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages

```
\emptyset regular \{\epsilon\} regular for a \in \Sigma R_1 \cup R_2 regular if both are R_1R_2 regular if R is regular if R
```

Regular Expressions

```
\emptyset denotes \emptyset

\epsilon denotes \{\epsilon\}

a denote \{a\}

r_1 + r_2 denotes R_1 \cup R_2

r_1r_2 denotes R_1R_2

r_1^* denote R_1^*
```

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Regular Languages vs Regular Expressions

Regular Languages

```
\emptyset regular \{\epsilon\} regular \{a\} regular for a \in \Sigma R_1 \cup R_2 regular if both are R_1R_2 regular if both are R^* is regular if R is
```

Regular Expressions

```
\emptyset denotes \emptyset
\epsilon denotes \{\epsilon\}
a denote \{a\}
r_1 + r_2 denotes R_1 \cup R_2
r_1r_2 denotes R_1R_2
r^* denote R^*
```

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Examples:
$$(0+1)^*$$
, $010^* + (110)^*$, $(10+110)^*(11+10)$

• For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +. **Example:** $r^*s + t = ((r^*)s) + t$

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concat, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

Skills

• Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to "understand" L(r) (say by giving an English description)

 \bullet $(0+1)^*$: set of all strings over $\{0,1\}$

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*:

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- \bullet 0* + (0*10*10*10*)*:

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0:

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$:

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alteranting 0s and 1s. Alternatively, strings with no two consecutive 0s and no two consecutive 1s

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon+1)(01)^*(\epsilon+0)$: alteranting 0s and 1s. Alternatively, strings with no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$:

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alteranting 0s and 1s. Alternatively, strings with no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

 bitstrings with the substring 001 or substring 100 ocurring as a substring

• bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's
 one answer: 0*1r where r is solution to previous part

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's
 one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain 011 as a substring

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's
 one answer: 0*1r where r is solution to previous part
- bitstrings that do *not* contain 011 as a substring one answer: $1*0*(10^+)*(1+\epsilon)$

- bitstrings with the substring 001 or substring 100 ocurring as a substring one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*
- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's
 one answer: 0*1r where r is solution to previous part
- bitstrings that do *not* contain 011 as a substring one answer: $1*0*(10^+)*(1+\epsilon)$
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

By induction. On what?

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

By induction. On what? Length of r since r is a string obtained from specific inductive rules.

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem

L is not a regular language.

Consider
$$L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$$

Theorem

L is not a regular language.

How do we prove it?

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is \bar{R}_1 (complement of R_1) regular?

Summary and Skills

Regular languages and expressions defined inductively via simple base cases and three operations: union, concatenation, Kleene star

Skills:

- Given a laguage L described in English, design a regular expression r such that L = L(r)
- Given a regular expression r, give an English description of the language $\boldsymbol{L}(r)$

Later:

- see equivalence with DFAs, NFAs
- technique to prove that languages are not regular