
Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

The art of art, the glory of expression
and the sunshine of the light of letters is simplicity.
Nothing is better than simplicity
nothing can make up for excess or for the lack of definiteness.

— Walt Whitman, Preface to Leaves of Grass (1855)

Freedom of choice
Is what you got.
Freedom from choice
Is what you want.

— Devo, “Freedom of Choice”, Freedom of Choice (1980)

4 Nondeterminism

4.1 Nondeterministic State Machines

The following diagram shows something that looks like a finite-state machine over the alphabet
{0,1}, but on closer inspection, it is not consistent with our earlier definitions. On one hand,
there are two transitions out of s for each input symbol. On the other hand, states a and b are
each missing an outgoing transition.

0 0

1 1

1,0 1,0s

a

c

b
A nondeterministic finite-state automaton

Nevertheless, there is a sense in which this machine “accepts” the set of all strings that contain
either 00 or 11 as a substring. Imagine that when the machine reads a symbol in state s, it
makes a choice about which transition to follow. If the input string contains the substring 00,
then it is possible for the machine to end in the accepting state c, by choosing to move into
state a when it reads a 0 immediately before another 0. Similarly, if the input string contains
the substring 11, it is possible for the machine to end in the accepting state c. On the other hand,
if the input string does not contain either 00 or 11—or in other words, if the input alternates
between 0 and 1—there are no choices that lead the machine to the accepting state. If the
machine incorrectly chooses to transition to state a and then reads a 1, or transitions to b and
then reads 0, it explodes; the only way to avoid an explosion is to stay in state s.

This object is an example of a nondeterministic finite-state automaton, or NFA, so named
because its behavior is not uniquely determined by the input string. Formally, every NFA has five
components:

• An arbitrary finite set Σ, called the input alphabet.

• Another arbitrary finite set Q, whose elements are called states.

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

• An arbitrary transition function δ : Q×Σ→ 2Q.

• A start state s ∈Q.

• A subset A ⊆Q of accepting states.

The only difference from the formal definition of deterministic finite-state automata is the domain
of the transition function. In a DFA, the transition function always returns a single state; in an
NFA, the transition function returns a set of states, which could be empty, or all of Q, or anything
in between.

Just like DFAs, the behavior of an NFA is governed by an input string w ∈ Σ∗, which the
machine reads one symbol at a time, from left to right. Unlike DFAs, however, an NFA does not
maintain a single current state, but rather a set of current states. Whenever the NFA reads a
symbol a, its set of current states changes from C to

⋃

q∈C δ(q, a). After all symbols have been
read, the NFA accepts w if its current state set contains at least one accepting state and rejects w
otherwise. In particular, if the set of current states ever becomes empty, it will stay empty forever,
and the NFA will reject.

More formally, we define the function δ∗ : Q×Σ∗→ 2Q that transitions on strings as follows:

δ∗(q, w) :=







{q} if w= ε,
⋃

r∈δ(q,a)

δ∗(r, x) if w= ax .

The NFA (Q,Σ,δ, s, A) accepts w ∈ Σ∗ if and only if δ∗(s, w)∩ A 6=∅.
We can equivalently define an NFA as a directed graph whose vertices are the states Q, whose

edges are labeled with symbols from Σ. We no longer require that every vertex has exactly one
outgoing edge with each label; it may have several such edges or none. An NFA accepts a string w
if the graph contains at least one walk from the start state to an accepting state whose label is w.

4.2 Intuition

There are at least three useful ways to think about non-determinism.

Clairvoyance. Whenever an NFA reads symbol a in state q, it chooses the next state from the
set δ(q, a), always magically choosing a state that leads to the NFA accepting the input string,
unless no such choice is possible. As the BSD fortune file put it, “Nondeterminism means never
having to say you’re wrong.”¹ Of course real machines can’t actually look into the future; that’s
why I used the word “magic”.

Parallel threads. An arguably more “realistic” view is that when an NFA reads symbol a in
state q, it spawns an independent execution thread for each state in δ(q, a). In particular, if
δ(q, a) is empty, the current thread simply dies. The NFA accepts if at least one thread is in an
accepting state after it reads the last input symbol.

Equivalently, we can imagine that when an NFA reads symbol a in state q, it branches into
several parallel universes, one for each state in δ(q, a). If δ(q, a) is empty, the NFA destroys the
universe (including itself). Similarly, if the NFA finds itself in a non-accepting state when the
input ends, the NFA destroys the universe. Thus, when the input is gone, only universes in which

¹This sentence is a riff on a horrible aphorism that was (sadly) popular in the US in the 70s and 80s. Fortunately,
everyone seems to have forgotten the original saying, except for that one time it was parodied on the Simpsons.

2

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product Σ×Ω of an input alphabet Σ and an oracle alphabet Ω.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string ω. In either formulation, the transition function
has the form δ : Q× (Σ×Ω)→ Q. As usual, this DFA accepts the pair (w,ω) ∈ (Σ×Ω)∗ if and
only if δ∗(s, (w,ω)) ∈ A. Finally, M nondeterministically accepts the string w ∈ Σ∗ if there is
an oracle string ω ∈ Ω∗ with |ω|= |w| such that (w,ω) ∈ L(M).

4.3 ε-Transitions

It is fairly common for NFAs to include so-called ε-transitions, which allow the machine to
change state without reading an input symbol. An NFA with ε-transitions accepts a string w
if and only if there is a sequence of transitions s

a1−→ q1
a2−→ q2

a3−→ · · ·
a`−→ q` where the final

state q` is accepting, each ai is either ε or a symbol in Σ, and a1a2 · · · a` = w.
For example, consider the following NFA with ε-transitions. (For this example, we indicate

the ε-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more ε-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with ε-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1
−→ s

ε
−→ d

ε
−→ a

0
−→ b

0
−→ c

ε
−→ d

1
−→ e

1
−→ f

ε
−→ e

1
−→ f

ε
−→ c

ε
−→ g

More formally, the transition function in an NFA with ε-transitions has a slightly larger
domain δ : Q× (Σ∪ {ε})→ 2Q. The ε-reach of a state q ∈Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r ∈ δ(q′,ε) for some state q′ in the ε-reach of q.

In other words, r is in the ε-reach of q if there is a (possibly empty) sequence of ε-transitions
leading from q to r. For example, in the example NFA above, the ε-reach of state f is {a, c, d, f , g}.

3

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

Now we redefine the extended transition function δ∗ : Q×Σ∗→ 2Q, which transitions on
arbitrary strings, as follows:

δ∗(p, w) :=







ε-reach(p) if w= ε,
⋃

r∈ε-reach(p)

⋃

q∈δ(r,a)
δ∗(q, x) if w= ax .

If we abuse notation by writing δ(S, a) =
⋃

q∈S δ(q, s) and δ∗(S, a) =
⋃

q∈S δ
∗(q, s) and

ε-reach(S, a) =
⋃

q∈S ε-reach(q, s) for any subset of states S ⊆ Q, this definition simplifies
as follows:

δ∗(p, w) :=

¨

ε-reach(p) if w= ε,
δ∗(δ(ε-reach(p), a), x) if w= ax .

Finally, as usual an NFA with ε-transitions accepts a string w if δ∗(s, w) contains at least one
accepting state.

Although it may appear at first that ε-transitions give us a more powerful set of machines,
NFAs with and without ε-transitions are actually equivalent. Given an NFA M = (Σ,Q, s, A,δ)
with ε-transitions, we can construct an equivalent NFA M ′ = (Σ,Q′, s′, A′,δ′)without ε-transitions
as follows:

Q′ :=Q

s′ = s

A′ =
�

q ∈Q
�

� ε-reach(q)∩ A 6=∅
	

δ′(q, a) = δ(ε-reach(q), a)

Straightforward definition-chasing now implies that M and M ′ accept exactly the same language.
Thus, whenever we reason about or design NFAs, we are free to either allow or forbid ε-transitions,
whichever is more convenient for the task at hand.

For example, our previous NFA would be transformed into the following equivalent NFA
without ε-transitions. The NFA on the right has two unreachable states a and d, but whatever.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

0 0

1 1

1,0 1,0s

b

g

e

c

f

a

d

1

0
1,0

1

1,0

1
An NFA with ε-transitions, and an equivalent NFA without ε-transitions

4.4 Kleene’s Theorem

We are now finally in a position to prove the following fundamental fact, first observed by Steven
Kleene in 1951:

Theorem 4.1. A language L can be described by a regular expression if and only if L is the language
accepted by a DFA.

We will prove Kleene’s fundamental theorem in four stages:

4

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

• Every DFA can be transformed into an equivalent NFA.

• Every NFA can be transformed into an equivalent DFA.

• Every regular expression can be transformed into an equivalent NFA.

• Every NFA can be transformed into an equivalent regular expression.

The first of these four transformations is completely trivial; a DFA is just a special type of NFA
where the transition function always returns a single state. Unfortunately, the other three
transformations require a bit more work.

4.5 DFA from NFAs: The Subset Construction

In the parallel-thread model of NFA execution, an NFA does not have a single current state, but
rather a set of current states. The evolution of this set of states is determined by a modified
transition function δ′ : 2Q ×Σ→ 2Q, defined by setting δ′(P, a) :=

⋃

p∈P δ(p, a) for any set of
states P ⊆Q and any symbol a ∈ Σ. When the NFA finishes reading its input string, it accepts if
and only if the current set of states intersects the set A of accepting states.

This formulation makes the NFA completely deterministic! We have just shown that any NFA
M = (Σ,Q, s, A,δ) is equivalent to a DFA M ′ = (Σ,Q′, s′, A′,δ′) defined as follows:

Q′ := 2Q

s′ := {s}

A′ :=
�

S ⊆Q
�

� S ∩ A 6=∅
	

δ′(q′, a) :=
⋃

p∈q′
δ(p, a) for all q′ ⊆Q and a ∈ Σ.

Similarly, any NFA with ε-transitions is equivalent to a DFA with the transition function

δ′(q′, a) =
⋃

p∈q′

⋃

r∈ε-reach(p)
δ(r, a)

for all q′ ⊆Q and a ∈ Σ. This conversion from NFA to DFA is often called the subset construction,
but that name is somewhat misleading; it’s not a “construction” so much as a change in perspective.

For example, the subset construction converts the 4-state NFA on the first page of this note
into the following 16-state DFA. To simplify notation, I’ve named each DFA state using a simple
string, omitting the braces and commas from the corresponding subset of NFA states; for example,
DFA state sbc corresponds to the subset {s, b, c} of NFA states.

0,1s

sa

sb

sab sc

ac

bc

sac

sbc
abc

sabc

0

1

0,1

1

0

0 1

0

1

0 1

0

1

0

0

1

1

0

1

a

Øab

b

c

0 1

1 0

0,1

1

0

The 16-state DFA obtained from our first 4-state NFA by the subset construction.
Only the five yellow states are reachable from the start state.

5

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

An obvious disadvantage of this “construction” is that it (usually) leads to DFAs with far more
states than necessary, in part because many states cannot even be reached from the start state.
In the example above, there are eleven unreachable states; only five states are reachable from s.

Incremental Subset Construction

Instead of building the entire subset DFA and then discarding the unreachable states, we can avoid
the unreachable states from the beginning by constructing the DFA incrementally, essentially by
performing a breadth-first search of the DFA graph.

To execute this algorithm by hand, we prepare a table with |Σ|+3 columns, with one row for
each DFA state we discover. In order, these columns record the following information:

• The DFA state (as a subset of NFA states)

• The ε-reach of the corresponding subset of NFA states

• Whether the DFA state is accepting (that is, whether the ε-reach intersects A)

• The output of the transition function for each symbol in Σ.

We start with DFA-state s in the first row and first column. Whenever we discover an unexplored
state in one of the last |Σ| columns, we copy it to the left column in a new row.

For example, given the NFA with ε-transitions from Section ??, the standard subset construc-
tion would produce a DFA with 256 states, but the incremental subset construction produces an
eleven-state DFA, described by the following table and illustrated on the next page. We would fill
in the first row, for the starting DFA state s, as follows:

• The ε-reach of NFA state s is {s, a, d}, so we write sad in the first column.

• None of the NFA states {s, a, d} is an accepting state, so s is not an accepting state of the
DFA; we don’t check the second column.

• Next, δ′({s, a, d},0) = δ(s,0)∪δ(a,0)∪δ(d,0) = {s} ∪ {b} ∪∅ = {s, b}, so we write sb
in the third column, and start a new row for the DFA state sb.

• Finally, δ′({s, a, d},1) = δ(s,1)∪δ(a,1)∪δ(d,1) = {s} ∪∅∪ {e}= {s, e}, so we write se
in the fourth column, and start a new row for the DFA state se.

q′ ε-reach(q′) q′ ∈ A′? δ′(q′,0) δ′(q′,1)
s sad sb se
sb sabd sbc se
se sade sb sef
sbc sabcdg Ø sbcg seg
sef sacdefg Ø sbg sefg
sbcg sabcdg Ø sbcg seg
seg sadeg Ø sbg sefg
sbg sabdg Ø sbcg seg
sefg sacdefg Ø sbg sefg

Although it avoids unreachable states, the incremental subset algorithm still gives us a DFA
with far more states than necessary, intuitively because it keeps looking for 00 and 11 substrings
even after it’s already found one. After all, after the NFA finds both 00 and 11 as substrings, it
doesn’t kill all the other parallel execution threads, because it can’t. NFAs often have significantly
fewer states than equivalent DFAs, but that efficiency also makes them kind of stupid.

6

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

0 1

1

0

0

0

1

1

0 1

0

1

0

1

1

0

s

sb

se

sbc

sef

sbcg

seg

sbg

sefg

0

1

An eight-state NFA with ε-transitions, and the output of the incremental subset construction for that NFA.

4.6 NFAs from Regular Expressions: Thompson’s Algorithm

We now turn to the core of Kleene’s theorem, which claims that regular languages (described by
regular expressions) and automatic languages (accepted by finite-state automata) are the same.

Lemma 4.2. Every regular language is accepted by a nondeterministic finite-state automaton.

Proof: In fact, we will prove the following stronger claim: Every regular language is accepted
by an NFA with exactly one accepting state, which is different from its start state. The following
construction was first described by Ken Thompson in 1968. Thompson’s algorithm actually proves
a stronger statement: For any regular language L, there is an NFA that accepts L that has exactly
one accepting state t, which is distinct from the starting state s.

Let R be an arbitrary regular expression over an arbitrary finite alphabet Σ. Assume that for
any sub-expression S of R, the language described by S is accepted by an NFA with one accepting
state distinct from its start state, which we denote pictorially by S . There are six cases
to consider—three base cases and three recursive cases—mirroring the recursive definition of a
regular expression.

• If R=∅, then L(R) =∅ is accepted by the trivial NFA .

• If R= ε, then L(R) = {ε} is accepted by a different trivial NFA ε .

• If R = a for some symbol a ∈ Σ, then L(R) = {a} is accepted by the NFA a . (The
case where R is a single string with length greater than 1 reduces to the single-symbol case
by concatenation, as described in the next case.)

• Suppose R= ST for some regular expressions S and T . The inductive hypothesis implies
that the languages L(S) and L(T) are accepted by NFAs S and T , respectively.

Then L(R) = L(ST) = L(S) • L(T) is accepted by the NFA S T
ε , built by

connecting the two component NFAs in series.

• Suppose R = S + T for some regular expressions S and T . The inductive hypothesis
implies that the language L(S) and L(T) are accepted by NFAs S and T ,

respectively. Then L(R) = L(S + T) = L(S)∪ L(T) is accepted by the NFA
S

T

ε

ε

ε

ε
,

built by connecting the two component NFAs in parallel with new start and accept states.

7

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

• Finally, suppose R= S∗ for some regular expression S. The inductive hypothesis implies that
the language L(S) is accepted by an NFA S . Then the language L(R) = L(S∗) = L(S)∗

is accepted by the NFA S

ε

ε

ε ε .

In all cases, the language L(R) is accepted by an NFA with one accepting state, which is different
from its start state, as claimed. �

As an example, given the regular expression (0+10∗1)∗ of strings containing an even number
of 1s, Thompson’s algorithm produces a 14-state NFA shown on the next page. As this example
shows, Thompson’s algorithm tends to produce NFAs with many redundant states. Fortunately,
just as there are for DFAs, there are algorithms that can reduce any NFA to an equivalent NFA
with the smallest possible number of states.

e f0d ε gεb c1 ε h i1ε

a

j k

l

0

ε

ε ε

ε

mεs ε

ε

ε

ε

ε
The NFA constructed by Thompson’s algorithm for the regular expression (0+10∗1)∗.

The four non-ε-transitions are drawn with with bold red arrows for emphasis.

Interestingly, applying the incremental subset algorithm to Thompson’s NFA tends to yield a
DFA with relatively few states, in part because the states in Thompson’s NFA tend to have large
ε-reach, and in part because relatively few of those states are the targets of non-ε-transitions.
Starting with the NFA shown above, for example, the incremental subset construction yields a
DFA for the language (0+10∗1)∗ with just five states:

q′ ε-reach(q′) q′ ∈ A′? δ′(q′,0) δ′(q′,1)
s sabjm Ø k c
k sabjklm Ø k c
c cdegh f i
f defgh f i
i sabjilm Ø k c

1

0

1
1

0

0

1

1

0

0

fc i

ks

The DFA computed by the incremental subset algorithm from Thompson’s NFA for (0+10∗1)∗.

This DFA can be further simplified to just two states, by observing that all three accepting
states are equivalent, and that both non-accepting states are equivalent. But still, five states is
pretty good, especially compared with the 213 = 8096 states that the naïve subset construction
would yield!

8

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

4.7 Another Example

Here is another example of all the algorithms we’ve seen so far, starting with the regular
expression (0+1)∗(00+11)(0+1)∗, which describes the language accepted by our very first
example NFA. Thompson’s algorithm constructs the following 26-state monster:

ε ε

ε ε

ε ε

ε ε

ε ε

ε

ε

ε

ε

ε
ε

ε

ε
ε ε

ε ε

ε ε
b

d

as g

i

m

h

b c0

d e1

a fs g

i j0 k l0

m n1 o p1

h q

u v0

w x1

t yr z

Thompson’s NFA for the regular expression (0+1)∗(00+11)(0+1)∗,
with the ε-reach of the start state s highlighted.

Given this NFA as input, the incremental subset construction computes the following table,
leading to a DFA with just nine states. Yeah, the ε-reaches get a bit ridiculous; unfortunately, this
is typical for Thompson’s NFA. As usual, the resulting DFA has far more states that necessary.

q′ ε-reach(q′) q′ ∈ A′? δ′(q′,0) δ′(q′,1)
s sabdghim cj en
cj sabcdfghijkm cjl en
en sabedfghimno cj enp
cjl sabcdfghijklmqrtuwz Ø cjlv enx
enp sabdefghimnopqrtuwz Ø cjv enpx
cjlv sabcdfghijklmqrtuvwyz Ø cjlv enx
enx sabdefghmnopqrtuwxyz Ø cjv enpx
cjv sabcdfghijkmrtuvwyz Ø cjlv enx
enpx sabdefghmnopqrtuwxyz Ø cjv enpx

cj

en

cjl

enp

cjlv

enpx

cjv

enx

s

0

1

0

10

1

1

0

0

1

0

0

1

0

0

1

10

The DFA computed by the incremental subset algorithm from Thompson’s NFA for (0+1)∗(00+11)(0+1)∗.

4.8 Regular Expressions from NFAs: Han and Wood’s Algorithm?

The only component of Kleene’s theorem we still have to prove is that every language accepted
by a DFA or NFA is regular. I’ll describe a relatively recent argument that is (at least morally)
equivalent to Kleene’s 1951 proof, but using more modern standard notation.

9

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

As often happens, it is actually easier to prove a stronger result. We consider a natural
generalization of NFAs called expression automata, introduced by Yo-Sub Han and Derick Wood
in 2005.² Formally, an expression automaton consists of the following components:

• A finite set Σ called the input alphabet

• Another finite set Q whose elements are called states

• A start state s ∈Q

• A single terminal state t ∈Q \ {s}

• A transition function R: (Q \ {t})× (Q \ {s})→ Reg(Σ), where Reg(Σ) is the set of regular
expressions over Σ

Less formally, an expression automaton is a directed graph that includes a directed edge p�q
labeled with a regular expression R(p�q), from every vertex p to every vertex q (including q = p),
where by convention, we require that R(q�s) = R(t�q) =∅ for every vertex q.

We say that string w matches a transition p�q if w matches the regular expression R(p�q). In
particular, if R(p�q) =∅, then no string matches p�q. More generally, w matches a sequence of
states q0�q1� · · ·�qk if w matches the regular expression R(q0�q1)•R(q1�q2)•· · ·•R(qk−1�qk).
Equivalently, w matches the sequence q0�q1� · · ·�qk if either

• w= ε and the sequence has only one state (k = 0), or

• w= x y for some string x that matches the regular expression R(q0�q1) and some string
y that matches the remaining sequence q1� · · ·�qk.

An expression automaton accepts any string that matches at least one sequence of states that
starts at s and ends at t. The language of an expression automaton E is the set of all strings
that E accepts.

Expression automata are nondeterministic. A single string could match several (even infinitely
many) state sequences that start with s, and it could match each of those state sequences in
several different ways. A string is accepted if at least one of the state sequences it matches ends
at t. Conversely, a string might match no state sequences; all such strings are rejected.

Two special cases of expression automata are already familiar. First, every regular language
is clearly the language of an expression automaton with exactly two states. Second, with only
minor modifications, any DFA or NFA can be converted into an expression automaton with
trivial transition expressions. Thompson’s algorithm can be used to transform any expression
automaton into an NFA, by recursively expanding any nontrivial transition. To complete the
proof of Kleene’s theorem, we show how to convert any expression automaton into a regular
expression by repeatedly deleting vertices.

Lemma 4.3. Every expression automaton accepts a regular language.

Proof: Let E = (Q,Σ, R, s, t) be an arbitrary expression automaton. Assume that any expression
automaton with fewer states than E accepts a regular language. There are two cases to consider,
depending on the number of states in Q:

• If Q = {s, t}, then trivially, E accepts the regular language R(s�t).

²Yo-Sub Han* and Derick Wood. The generalization of generalized automata: Expression automata. International
Journal of Foundations of Computer Science 16(3):499–510, 2005.

10

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

• On the other hand, suppose there is a state q ∈ Q \ {s, t}. We modify the automaton,
without changing its language, so that state q is redundant and can be removed. Define a
new transition function R′ : Q×Q→ Reg(Σ) by setting

R′(p�r) := R(p�r) + R(p�q)R(q�q)∗ R(q�r).

With this modified transition function in place, any string w that matches the sequence
p�q�q� · · ·�q�r with any number of q’s also matches the single transition p�r. Thus,
by induction, if w matches a sequence of states, it also matches the subsequence obtained
by removing all q’s. Let E′ be the expression automaton with states Q′ =Q \ {q} that uses
this modified transition function R′. This new automaton accepts exactly the same strings
as the original automaton E. Because E′ has fewer states than E, the inductive hypothesis
implies E′ accepts a regular language.

In both cases, we conclude that E accepts a regular language. �

This proof can be mechanically translated into an algorithm to convert any NFA—in particular,
any DFA—into an equivalent regular expression. The figure below shows this algorithm in
action, on a DFA that accepts the binary representations of non-negative integers divisible
by 3, possibly with extra leading 0s. (State i means the binary number we’ve read so far is
congruent to i mod 3.) First we convert the DFA into an expression automaton by adding a
new accept state. (We don’t need to add a new start state, because there are no transitions
the original start state s.) Then we remove state 2, then state 0, and finally state 1, updating
the transition expressions between any remaining states at each iteration. For the sake of
clarity, edges p�q with R(p�q) =∅ are omitted from the figures. The final regular expression
00∗+(00∗1+1)(10∗1+01∗0)∗10∗ can be slightly simplified to 00∗+0∗1(10∗1+01∗0)∗10∗,
which is precisely the regular expression we gave for this language back in Lecture Note 2!

00*+(00*1+1)(01*0+10*1)*10*

0

1

1

0

2 1

s tε 0

1

1

0

0

s tε

00*

00*1+1

1

01*0+10*1

s t

10*s t

0

01*0

1
1

0

1

1

0

2 1
0

0

s 0

1
1

0

0
1

1

Converting a DFA into an equivalent regular expression using Han and Wood’s algorithm.

Given an NFA with n states (including s and t), Han and Wood’s algorithm iteratively removes
n− 2 states, updating O(n2) transition expressions in each iteration. If the concatenation and
Kleene star operations could be performed in constant time, the resulting algorithm would run in
O(n3) time. However, in the worst case, the transition expressions grows in length by roughly a
factor of 4 in each iteration, so the final expression has length Θ(4n). If we insist on representing
the expressions as explicit strings, the worst-case running time is actually Θ(4n).

11

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

4.9 Functions of Regular Languages

ÆÆÆ English!

Lemma 4.4. For any regular language L, the language LR = {wR | w ∈ L} is also regular.

Lemma 4.5. For any regular language L, the language half(L) := {w | ww ∈ L} is also regular.

Proof: Let M = (Σ,Q, s, A,δ) be an arbitrary DFA that accepts L.
Intuitively, our new NFA M ′ reads its input string w and somehow needs to simulate the

original DFA M reading the input string ww. Our overall strategy has three parts:

• First M ′ non-deterministically guesses the state h= δ∗(s, w) that M reaches after reading
input w. (We can’t just run M on input w to compute the correct state h, because that
would consume the input string!)

• Then M ′ simultaneously run two copies of M (using a product construction): a “left” copy
starting at s and a “right” copy starting at the (guessed) halfway state h.

• Finally, when M ′ is done reading w, it accepts if and only if the first copy of M actually
stopped in state h (so our initial guess was correct) and the second copy of M stopped in
an accepting state. That is, M ′ accepts if and only if h= δ∗(s, w) and δ∗(h, w) ∈ A.

To implement this strategy, M ′ needs to maintain three states of M : the state of the left copy
of M , the guess h for the halfway state, and the state of the right copy of M . The first and
third states evolve according to the transition function δ, but the second state never changes.
Finally, to implement the non-deterministic guessing, M ′ includes a special start state s′ with
ε-transitions to every triple of the form (s, h, h).

Summing up, our new NFA M ′ = (Σ,Q′, s′, A′,δ′) is formally defined as follows.

Q′ = (Q×Q×Q) ∪ {s′}

A′ =
�

(h, h, q)
�

� h ∈Q and q ∈ A
	

δ′(s′,ε) =
�

(s, h, h)
�

� h ∈Q
	

δ′(s′, a) =∅ for all a ∈ Σ

δ′((p, h, q),ε) =∅ for all p, h, q ∈Q

δ′((p, h, q), a) =
�

(δ(p, a), h,δ(q, a))
	

for all p, h, q ∈Q and a ∈ Σ

�

Exercises

1. For each of the following regular expressions, describe or draw two finite-state machines:

• An NFA that accepts the same language, constructed using Thompson’s algorithm.

• An equivalent DFA, built from the previous NFA using the incremental subset con-
struction. For each state in your DFA, identify the corresponding subset of states in
your NFA. Your DFA should have no unreachable states.

(a) (01+10)∗(0+1+ ε)

12

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

(b) (ε +1)(01)∗(ε +0)

(c) 1∗ + (10)∗ + (100)∗

(d) (ε +0+00)(1+10+100)∗

(e) ((0+1)(0+1))∗

(f) ε +0(0+1)∗ +1(1+0)∗

2. Let L ⊆ Σ∗ be an arbitrary regular language. Prove that the following languages are regular.
Assume # ∈ Σ.

(a) censor(L) :=
�

#|w|
�

� w ∈ L
	

(b) dehash(L) =
�

dehash(w)
�

� w ∈ L
	

, where dehash(w) is the subsequence of w obtained
by deleting every #.

(c) insert(L) :=
�

x#y
�

� x y ∈ L
	

.

(d) delete(L) :=
�

x y
�

� x#y ∈ L
	

.

(e) prefix(L) := {x ∈ Σ∗ | x y ∈ L for some y ∈ Σ∗}

(f) suffix(L) := {y ∈ Σ∗ | x y ∈ L for some x ∈ Σ∗}

(g) substring(L) := {y ∈ Σ∗ | x yz ∈ L for some x , z ∈ Σ∗}

(h) superstring(L) := {x yz | y ∈ L and x , z ∈ Σ∗}

(i) cycle(L) := {x y | x , y ∈ Σ∗ and y x ∈ L}

(j) prefmax(L) := {x ∈ L | x y ∈ L ⇐⇒ y = ε}.

(k) sufmin(L) := {x y ∈ L | y ∈ L ⇐⇒ x = ε}.

(l) everyother(L) := {everyother(w) | w ∈ L}, where everyother(w) is the subsequence of
w containing every other symbol. For example, everyother(EVERYOTHER) = VROHR.

(m) rehtoyreve(L) := {w ∈ Σ∗ | everyother(w) ∈ L}.

(n) subseq(L) := {x ∈ Σ∗ | x is a subsequence of some y ∈ L}

(o) superseq(L) := {x ∈ Σ∗ | some y ∈ L is a subsequence of x}

(p) left(L) := {x ∈ Σ∗ | x y ∈ L for some y ∈ Σ∗ where |x |= |y|}

(q) right(L) := {y ∈ Σ∗ | x y ∈ L for some x ∈ Σ∗ where |x |= |y|}

(r) middle(L) := {y ∈ Σ∗ | x yz ∈ L for some x , z ∈ Σ∗ where |x |= |y|= |z|}

(s) half(L) := {w ∈ Σ∗ | ww ∈ L}

(t) third(L) := {w ∈ Σ∗ | www ∈ L}

(u) palin(L) :=
�

w ∈ Σ∗
�

� wwR ∈ L
	

(v) drome(L) :=
�

w ∈ Σ∗
�

� wRw ∈ L
	

?(w) sqrt(L) :=
�

x ∈ Σ∗
�

� x y ∈ L for some y ∈ Σ∗ such that |y|= |x |2
	

13

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

?(x) log(L) :=
�

x ∈ Σ∗
�

� x y ∈ L for some y ∈ Σ∗ such that |y|= 2|x |
	

?(y) flog(L) :=
�

x ∈ Σ∗
�

� x y ∈ L for some y ∈ Σ∗ such that |y|= F|x |
	

, where Fn is the
nth Fibonacci number.

?3. Let L ⊆ Σ∗ be an arbitrary regular language. Prove that the following languages are
regular.

(a) somerep(L) := {w ∈ Σ∗ | wn ∈ L for some n≥ 0}

(b) allreps(L) := {w ∈ Σ∗ | wn ∈ L for every n≥ 0}

(c) manyreps(L) := {w ∈ Σ∗ | wn ∈ L for infinitely many n≥ 0}

(d) fewreps(L) := {w ∈ Σ∗ | wn ∈ L for finitely many n≥ 0}

(e) powers(L) :=
�

w ∈ Σ∗
�

� w2n
∈ L for some n≥ 0

	

Æ(f) whattheN (L) := {w ∈ Σ∗ | wn ∈ L for some n ∈ N}, where N is an arbitrary fixed set
of non-negative integers. [Hint: You only have to prove that an accepting NFA exists;
you don’t have to describe how to construct it.]

[Hint: For each of these languages, there is an accepting NFA with at most qq states, where q
is the number of states in some DFA that accepts L.]

Æ4. Let L ⊆ Σ∗ be an arbitrary regular language. Prove that the following languages are
regular.

(a) repsqrt(L) =
�

w ∈ Σ∗
�

� w|w| ∈ L
	

.

(b) replog(L) =
�

w ∈ Σ∗
�

� w2|w| ∈ L
	

.

(c) repflog(L) =
�

w ∈ Σ∗
�

� wF|w| ∈ L
	

, where Fn is the nth Fibonacci number.

[Hint: The NFAs for these languages use a LOT of states. Let M = (Σ,Q, s, A,δ) be a DFA
that accepts L. Imagine that you somehow know δ∗(q, w) in advance, for every state q ∈ Q.
Ha, ha, ha! Mine is an evil laugh!]

5. A Moore machine is a variant of a finite-state automaton that produces output; Moore
machines are sometimes called finite-state transducers. For purposes of this problem, a
Moore machine formally consists of six components:

• A finite set Σ called the input alphabet

• A finite set Γ called the output alphabet

• A finite set Q whose elements are called states

• A start state s ∈Q

• A transition function δ : Q×Σ→Q

• An output function ω: Q→ Γ

14

Models of Computation Lecture 4: Nondeterministic Automata [Fa’16]

More intuitively, a Moore machine is a graph with a special start vertex, where every node
(state) has one outgoing edge labeled with each symbol from the input alphabet, and each
node (state) is additionally labeled with a symbol from the output alphabet.

The Moore machine reads an input string w ∈ Σ∗ one symbol at a time. For each
symbol, the machine changes its state according to the transition function δ, and then
outputs the symbol ω(q), where q is the new state. Formally, we recursively define a
transducer function ω∗ : Σ∗ ×Q→ Γ ∗ as follows:

ω∗(w, q) =

¨

ε if w= ε
ω(δ(a, q)) ·ω∗(x ,δ(a, q)) if w= ax

Given input string w ∈ Σ∗, the machine outputs the string ω∗(w, s) ∈ Γ ∗. To simplify
notation, we define M(w) =ω∗(w, s).

Finally, the output language L◦(M) of a Moore machine M is the set of all strings that
the machine can output:

L◦(M) :=
�

M(w)
�

� w ∈ Σ∗
	

(a) Let M be an arbitrary Moore machine. Prove that L◦(M) is a regular language.

(b) Let M be an arbitrary Moore machine whose input alphabet Σ and output alphabet Γ
are identical. Prove that the language

L=(M) =
�

w ∈ Σ∗
�

� M(w) = w
	

is regular. Strings in L=(M) are also called fixed points of the function M : Σ∗→ Σ∗.
?(c) As in part (b), let M be an arbitrary Moore machine whose input and output alphabets

are identical. Prove that the language
�

w ∈ Σ∗
�

� M(M(w)) = w
	

is regular.

[Hint: Parts (a) and (b) are easier than they look!]

15

