
Algorithms Appendix II: Solving Recurrences [Fa’13]

Change is certain. Peace is followed by disturbances; departure of evil men by their return.
Such recurrences should not constitute occasions for sadness but realities for awareness, so
that one may be happy in the interim.

— I Ching [The Book of Changes] (c. 1100 BC)

To endure the idea of the recurrence one needs: freedom from morality; new means against
the fact of pain (pain conceived as a tool, as the father of pleasure; there is no cumulative
consciousness of displeasure); the enjoyment of all kinds of uncertainty, experimentalism, as
a counterweight to this extreme fatalism; abolition of the concept of necessity; abolition of
the “will”; abolition of “knowledge-in-itself.”

— Friedrich Nietzsche The Will to Power (1884)
[translated by Walter Kaufmann]

Wil Wheaton: Embrace the dark side!
Sheldon: That’s not even from your franchise!

— “The Wheaton Recurrence”, Bing Bang Theory, April 12, 2010

Solving Recurrences

1 Introduction

A recurrence is a recursive description of a function, or in other words, a description of a function
in terms of itself. Like all recursive structures, a recurrence consists of one or more base cases and
one or more recursive cases. Each of these cases is an equation or inequality, with some function
value f (n) on the left side. The base cases give explicit values for a (typically finite, typically
small) subset of the possible values of n. The recursive cases relate the function value f (n) to
function value f (k) for one or more integers k < n; typically, each recursive case applies to an
infinite number of possible values of n.

For example, the following recurrence (written in two different but standard ways) describes
the identity function f (n) = n:

f (n) =

¨

0 if n= 0

f (n− 1) + 1 otherwise

f (0) = 0

f (n) = f (n− 1) + 1 for all n> 0

In both presentations, the first line is the only base case, and the second line is the only recursive
case. The same function can satisfymany different recurrences; for example, both of the following
recurrences also describe the identity function:

f (n) =











0 if n= 0

1 if n= 1

f (bn/2c) + f (dn/2e) otherwise

f (n) =











0 if n= 0

2 · f (n/2) if n is even and n> 0

f (n− 1) + 1 if n is odd

We say that a particular function satisfies a recurrence, or is the solution to a recurrence,
if each of the statements in the recurrence is true. Most recurrences—at least, those that we
will encounter in this class—have a solution; moreover, if every case of the recurrence is an
equation, that solution is unique. Specifically, if we transform the recursive formula into a
recursive algorithm, the solution to the recurrence is the function computed by that algorithm!
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Recurrences arise naturally in the analysis of algorithms, especially recursive algorithms. In
many cases, we can express the running time of an algorithm as a recurrence, where the recursive
cases of the recurrence correspond exactly to the recursive cases of the algorithm. Recurrences
are also useful tools for solving counting problems—How many objects of a particular kind exist?

By itself, a recurrence is not a satisfying description of the running time of an algorithm or a
bound on the number of widgets. Instead, we need a closed-form solution to the recurrence; this
is a non-recursive description of a function that satisfies the recurrence. For recurrence equations,
we sometimes prefer an exact closed-form solution, but such a solution may not exist, or may
be too complex to be useful. Thus, for most recurrences, especially those arising in algorithm
analysis, we are satisfied with an asymptotic solution of the form Θ(g(n)), for some explicit
(non-recursive) function g(n).

For recursive inequalities, we prefer a tight solution; this is a function that would still satisfy
the recurrence if all the inequalities were replaced with the corresponding equations. Again,
exactly tight solutions may not exist, or may be too complex to be useful, in which case we seek
either a looser bound or an asymptotic solution of the form O(g(n)) or Ω(g(n)).

2 The Ultimate Method: Guess and Confirm

Ultimately, there is only one fail-safe method to solve any recurrence:

Guess the answer, and then prove it correct by induction.

Later sections of these notes describe techniques to generate guesses that are guaranteed to be
correct, provided you use them correctly. But if you’re faced with a recurrence that doesn’t seem
to fit any of these methods, or if you’ve forgotten how those techniques work, don’t despair! If
you guess a closed-form solution and then try to verify your guess inductively, usually either the
proof will succeed, in which case you’re done, or the proof will fail, in which case your failure
will help you refine your guess. Where you get your initial guess is utterly irrelevant¹—from a
classmate, from a textbook, on the web, from the answer to a different problem, scrawled on a
bathroom wall in Siebel, included in a care package from your mom, dictated by the machine
elves, whatever. If you can prove that the answer is correct, then it’s correct!

2.1 Tower of Hanoi

The classical Tower of Hanoi problem gives us the recurrence T(n) = 2T(n − 1) + 1 with base
case T(0) = 0. Just looking at the recurrence we can guess that T (n) is something like 2n. If we
write out the first few values of T (n), we discover that they are each one less than a power of two.

T (0) = 0, T (1) = 1, T (2) = 3, T (3) = 7, T (4) = 15, T (5) = 31, T (6) = 63, . . . ,

It looks like T(n) = 2n − 1 might be the right answer. Let’s check.

T (0) = 0= 20 − 1 Ø

T (n) = 2T (n− 1) + 1

= 2(2n−1 − 1) + 1 [induction hypothesis]

= 2n − 1 Ø [algebra]

¹. . . except of course during exams, where you aren’t supposed to use any outside sources
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We were right! Hooray, we’re done!
Another way we can guess the solution is by unrolling the recurrence, by substituting it into

itself:

T (n) = 2T (n− 1) + 1

= 2 (2T (n− 2) + 1) + 1

= 4T (n− 2) + 3

= 4 (2T (n− 3) + 1) + 3

= 8T (n− 3) + 7

= · · ·

It looks like unrolling the initial Hanoi recurrence k times, for any non-negative integer k, will
give us the new recurrence T (n) = 2kT (n− k) + (2k − 1). Let’s prove this by induction:

T (n) = 2T (n− 1) + 1 Ø [k = 0, by definition]

T (n) = 2k−1T (n− (k− 1)) + (2k−1 − 1) [inductive hypothesis]

= 2k−1
�

2T (n− k) + 1
�

+ (2k−1 − 1) [initial recurrence for T (n− (k− 1))]

= 2kT (n− k) + (2k − 1) Ø [algebra]

Our guess was correct! In particular, unrolling the recurrence n times give us the recurrence
T (n) = 2nT (0) + (2n − 1). Plugging in the base case T (0) = 0 give us the closed-form solution
T (n) = 2n − 1.

2.2 Fibonacci numbers

Let’s try a less trivial example: the Fibonacci numbers Fn = Fn−1 + Fn−2 with base cases F0 = 0
and F1 = 1. There is no obvious pattern in the first several values (aside from the recurrence
itself), but we can reasonably guess that Fn is exponential in n. Let’s try to prove inductively that
Fn ≤ α · cn for some constants a > 0 and c > 1 and see how far we get.

Fn = Fn−1 + Fn−2

≤ α · cn−1 +α · cn−2 [“induction hypothesis”]

≤ α · cn ???

The last inequality is satisfied if cn ≥ cn−1 + cn−2, or more simply, if c2 − c − 1≥ 0. The smallest
value of c that works is φ = (1+

p
5)/2 ≈ 1.618034; the other root of the quadratic equation

has smaller absolute value, so we can ignore it.
So we have most of an inductive proof that Fn ≤ α ·φn for some constant α. All that we’re

missing are the base cases, which (we can easily guess) must determine the value of the coefficient
a. We quickly compute

F0

φ0
=

0
1
= 0 and

F1

φ1
=

1
φ
≈ 0.618034> 0,

so the base cases of our induction proof are correct as long as α≥ 1/φ. It follows that Fn ≤ φn−1

for all n≥ 0.
What about a matching lower bound? Essentially the same inductive proof implies that

Fn ≥ β ·φn for some constant β , but the only value of β that works for all n is the trivial β = 0!
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We could try to find some lower-order term that makes the base case non-trivial, but an easier
approach is to recall that asymptotic Ω( ) bounds only have to work for sufficiently large n. So
let’s ignore the trivial base case F0 = 0 and assume that F2 = 1 is a base case instead. Some more
easy calculation gives us

F2

φ2
=

1
φ2
≈ 0.381966<

1
φ

.

Thus, the new base cases of our induction proof are correct as long as β ≤ 1/φ2, which implies
that Fn ≥ φn−2 for all n≥ 1.

Putting the upper and lower bounds together, we obtain the tight asymptotic bound Fn =
Θ(φn). It is possible to get a more exact solution by speculatively refining and conforming our
current bounds, but it’s not easy. Fortunately, if we really need it, we can get an exact solution
using the annihilator method, which we’ll see later in these notes.

2.3 Mergesort

Mergesort is a classical recursive divide-and-conquer algorithm for sorting an array. The algorithm
splits the array in half, recursively sorts the two halves, and then merges the two sorted subarrays
into the final sorted array.

MergeSort(A[1 .. n]):
if (n> 1)

m← bn/2c
MergeSort(A[1 .. m])
MergeSort(A[m+ 1 .. n])
Merge(A[1 .. n], m)

Merge(A[1 .. n], m):
i← 1; j← m+ 1
for k← 1 to n

if j > n
B[k]← A[i]; i← i + 1

else if i > m
B[k]← A[ j]; j← j + 1

else if A[i]< A[ j]
B[k]← A[i]; i← i + 1

else
B[k]← A[ j]; j← j + 1

for k← 1 to n
A[k]← B[k]

Let T (n) denote the worst-case running time of MergeSort when the input array has size n.
The Merge subroutine clearly runs in Θ(n) time, so the function T (n) satisfies the following
recurrence:

T (n) =

(

Θ(1) if n= 1,

T
�

dn/2e
�

+ T
�

bn/2c
�

+Θ(n) otherwise.

For now, let’s consider the special case where n is a power of 2; this assumption allows us to take
the floors and ceilings out of the recurrence. (We’ll see how to deal with the floors and ceilings
later; the short version is that they don’t matter.)

Because the recurrence itself is given only asymptotically—in terms of Θ( ) expressions—we
can’t hope for anything but an asymptotic solution. So we can safely simplify the recurrence
further by removing the Θ’s; any asymptotic solution to the simplified recurrence will also satisfy
the original recurrence. (This simplification is actually important for another reason; if we kept
the asymptotic expressions, we might be tempted to simplify them inappropriately.)

Our simplified recurrence now looks like this:

T (n) =

(

1 if n= 1,

2T (n/2) + n otherwise.
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To guess at a solution, let’s try unrolling the recurrence.

T (n) = 2T (n/2) + n

= 2
�

2T (n/4) + n/2
�

+ n

= 4T (n/4) + 2n

= 8T (n/8) + 3n= · · ·

It looks like T (n) satisfies the recurrence T (n) = 2kT (n/2k)+ kn for any positive integer k. Let’s
verify this by induction.

T (n) = 2T (n/2) + n= 21T (n/21) + 1 · n Ø [k = 1, given recurrence]

T (n) = 2k−1T (n/2k−1) + (k− 1)n [inductive hypothesis]

= 2k−1
�

2T (n/2k) + n/2k−1
�

+ (k− 1)n [substitution]

= 2kT (n/2k) + kn Ø [algebra]

Our guess was right! The recurrence becomes trivial when n/2k = 1, or equivalently, when
k = log2 n:

T (n) = nT (1) + n log2 n= n log2 n+ n.

Finally, we have to put back the Θ’s we stripped off; our final closed-form solution is T(n) =
Θ(n logn).

2.4 An uglier divide-and-conquer example

Consider the divide-and-conquer recurrence T(n) =
p

n · T(
p

n) + n. This doesn’t fit into the
form required by the Master Theorem (which we’ll see below), but it still sort of resembles the
Mergesort recurrence—the total size of the subproblems at the first level of recursion is n—so
let’s guess that T (n) = O(n log n), and then try to prove that our guess is correct. (We could also
attack this recurrence by unrolling, but let’s see how far just guessing will take us.)

Let’s start by trying to prove an upper bound T (n)≤ a n lg n for all sufficiently large n and
some constant a to be determined later:

T (n) =
p

n · T (
p

n) + n

≤
p

n · a
p

n lg
p

n+ n [induction hypothesis]

= (a/2)n lg n+ n [algebra]

≤ an lg n Ø [algebra]

The last inequality assumes only that 1 ≤ (a/2) log n,or equivalently, that n ≥ 22/a. In other
words, the induction proof is correct if n is sufficiently large. So we were right!

But before you break out the champagne, what about the multiplicative constant a? The proof
worked for any constant a, no matter how small. This strongly suggests that our upper bound
T (n) = O(n log n) is not tight. Indeed, if we try to prove a matching lower bound T (n)≥ b n log n
for sufficiently large n, we run into trouble.

T (n) =
p

n · T (
p

n) + n

≥
p

n · b
p

n log
p

n+ n [induction hypothesis]

= (b/2)n log n+ n

6≥ bn log n
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The last inequality would be correct only if 1> (b/2) log n, but that inequality is false for large
values of n, no matter which constant b we choose.

Okay, so Θ(n log n) is too big. How about Θ(n)? The lower bound is easy to prove directly:

T (n) =
p

n · T (
p

n) + n≥ n Ø

But an inductive proof of the upper bound fails.

T (n) =
p

n · T (
p

n) + n

≤
p

n · a
p

n+ n [induction hypothesis]

= (a+ 1)n [algebra]

6≤ an

Hmmm. So what’s bigger than n and smaller than n lg n? How about n
p

lg n?

T (n) =
p

n · T (
p

n) + n≤
p

n · a
p

n
q

lg
p

n+ n [induction hypothesis]

= (a/
p

2)n
Æ

lg n+ n [algebra]

≤ a n
Æ

lg n for large enough n Ø

Okay, the upper bound checks out; how about the lower bound?

T (n) =
p

n · T (
p

n) + n≥
p

n · b
p

n
q

lg
p

n+ n [induction hypothesis]

= (b/
p

2)n
Æ

lg n+ n [algebra]

6≥ b n
Æ

lg n

No, the last step doesn’t work. So Θ(n
p

lg n) doesn’t work.
Okay. . . what else is between n and n lg n? How about n lg lg n?

T (n) =
p

n · T (
p

n) + n≤
p

n · a
p

n lg lg
p

n+ n [induction hypothesis]

= a n lg lg n− a n+ n [algebra]

≤ a n lg lg n if a ≥ 1 Ø

Hey look at that! For once, our upper bound proof requires a constraint on the hidden constant
a. This is an good indication that we’ve found the right answer. Let’s try the lower bound:

T (n) =
p

n · T (
p

n) + n≥
p

n · b
p

n lg lg
p

n+ n [induction hypothesis]

= b n lg lg n− b n+ n [algebra]

≥ b n lg lg n if b ≤ 1 Ø

Hey, it worked! We have most of an inductive proof that T (n)≤ an lg lg n for any a ≥ 1 and most
of an inductive proof that T (n)≥ bn lg lg n for any b ≤ 1. Technically, we’re still missing the base
cases in both proofs, but we can be fairly confident at this point that T(n) = Θ(n log logn).

3 Divide and Conquer Recurrences (Recursion Trees)

Many divide and conquer algorithms give us running-time recurrences of the form

T (n) = a T (n/b) + f (n) (1)
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where a and b are constants and f (n) is some other function. There is a simple and general
technique for solving many recurrences in this and similar forms, using a recursion tree. The
root of the recursion tree is a box containing the value f (n); the root has a children, each of
which is the root of a (recursively defined) recursion tree for the function T (n/b).

Equivalently, a recursion tree is a complete a-ary tree where each node at depth i contains
the value f (n/bi). The recursion stops when we get to the base case(s) of the recurrence.
Because we’re only looking for asymptotic bounds, the exact base case doesn’t matter; we can
safely assume that T (1) = Θ(1), or even that T (n) = Θ(1) for all n≤ 10100. I’ll also assume for
simplicity that n is an integral power of b; we’ll see how to avoid this assumption later (but to
summarize: it doesn’t matter).

Now T (n) is just the sum of all values stored in the recursion tree. For each i, the ith level of
the tree contains ai nodes, each with value f (n/bi). Thus,

T (n) =
L
∑

i=0

ai f (n/bi) (Σ)

where L is the depth of the recursion tree. We easily see that L = logb n, because n/bL = 1.
The base case f (1) = Θ(1) implies that the last non-zero term in the summation is Θ(aL) =
Θ(alogb n) = Θ(nlogb a).

For most divide-and-conquer recurrences, the level-by-level sum (Σ) is a geometric series—
each term is a constant factor larger or smaller than the previous term. In this case, only the
largest term in the geometric series matters; all of the other terms are swallowed up by the Θ(·)
notation.

f(n/b)

f(n)

a

a

f(n/bL)

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n/b)

a

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n/b)

a

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n/b)

a

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n)

a⋅f(n/b)

a²⋅f(n/b²)

aL⋅f(n/bL)

+

+

+

+

f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL) f(n/bL)

A recursion tree for the recurrence T (n) = a T (n/b) + f (n)

Here are several examples of the recursion-tree technique in action:

• Mergesort (simplified): T(n) = 2T(n/2) + n

There are 2i nodes at level i, each with value n/2i , so every term in the level-by-level
sum (Σ) is the same:

T (n) =
L
∑

i=0

n.

The recursion tree has L = log2 n levels, so T(n) = Θ(n logn).
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• Randomized selection: T(n) = T(3n/4) + n

The recursion tree is a single path. The node at depth i has value (3/4)in, so the
level-by-level sum (Σ) is a decreasing geometric series:

T (n) =
L
∑

i=0

(3/4)in.

This geometric series is dominated by its initial term n, so T(n) = Θ(n). The recursion
tree has L = log4/3 n levels, but so what?

• Karatsuba’s multiplication algorithm: T(n) = 3T(n/2) + n

There are 3i nodes at depth i, each with value n/2i , so the level-by-level sum (Σ) is an
increasing geometric series:

T (n) =
L
∑

i=0

(3/2)in.

This geometric series is dominated by its final term (3/2)Ln. Each leaf contributes 1 to
this term; thus, the final term is equal to the number of leaves in the tree! The recursion
tree has L = log2 n levels, and therefore 3log2 n = nlog2 3 leaves, so T(n) = Θ(nlog2 3).

• T(n) = 2T(n/2) + n/ lgn

The sum of all the nodes in the ith level is n/(lg n− i). This implies that the depth of
the tree is at most lg n− 1. The level sums are neither constant nor a geometric series, so
we just have to evaluate the overall sum directly.

Recall (or if you’re seeing this for the first time: Behold!) that the nth harmonic number
Hn is the sum of the reciprocals of the first n positive integers:

Hn :=
n
∑

i=1

1
i

It’s not hard to show that Hn = Θ(log n); in fact, we have the stronger inequalities
ln(n+ 1)≤ Hn ≤ ln n+ 1.

T (n) =
lg n−1
∑

i=0

n
lg n− i

=
lg n
∑

j=1

n
j
= nHlg n = Θ(n lg lg n)

• T(n) = 4T(n/2) + n lgn

There are 4i nodes at each level i, each with value (n/2i) lg(n/2i) = (n/2i)(lg n− i);
again, the depth of the tree is at most lg n− 1. We have the following summation:

T (n) =
lg n−1
∑

i=0

n2i(lg n− i)

We can simplify this sum by substituting j = lg n− i:

T (n) =
lg n
∑

j=i

n2lg n− j j =
lg n
∑

j=i

n2 j
2 j
= n2

lg n
∑

j=i

j
2 j
= Θ(n2)
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The last step uses the fact that
∑∞

i=1 j/2 j = 2. Although this is not quite a geometric series,
it is still dominated by its largest term.

• Ugly divide and conquer: T(n) =
p

n · T(
p

n) + n

We solved this recurrence earlier by guessing the right answer and verifying, but we
can use recursion trees to get the correct answer directly. The degree of the nodes in the
recursion tree is no longer constant, so we have to be a bit more careful, but the same
basic technique still applies. It’s not hard to see that the nodes in any level sum to n. The

depth L satisfies the identity n2−L
= 2 (we can’t get all the way down to 1 by taking square

roots), so L = lg lg n and T(n) = Θ(n lg lgn).

• Randomized quicksort: T(n) = T(3n/4) + T(n/4) + n

This recurrence isn’t in the standard form described earlier, but we can still solve it
using recursion trees. Now modes in the same level of the recursion tree have different
values, and different leaves are at different levels. However, the nodes in any complete level
(that is, above any of the leaves) sum to n. Moreover, every leaf in the recursion tree has
depth between log4 n and log4/3 n. To derive an upper bound, we overestimate T (n) by
ignoring the base cases and extending the tree downward to the level of the deepest leaf.
Similarly, to derive a lower bound, we overestimate T (n) by counting only nodes in the
tree up to the level of the shallowest leaf. These observations give us the upper and lower
bounds n log4 n ≤ T (n) ≤ n log4/3 n. Since these bounds differ by only a constant factor,
we have T(n) = Θ(n logn).

• Deterministic selection: T(n) = T(n/5) + T(7n/10) + n

Again, we have a lopsided recursion tree. If we look only at complete levels of the tree, we
find that the level sums form a descending geometric series T (n) = n+9n/10+81n/100+· · ·.
We can get an upper bound by ignoring the base cases entirely and growing the tree out to
infinity, and we can get a lower bound by only counting nodes in complete levels. Either
way, the geometric series is dominated by its largest term, so T(n) = Θ(n).

• Randomized search trees: T(n) =
1
4 T(n/4) +

3
4 T(3n/4) + 1

This looks like a divide-and-conquer recurrence, but what does it mean to have a
quarter of a child? The right approach is to imagine that each node in the recursion tree
has a weight in addition to its value. Alternately, we get a standard recursion tree again if
we add a second real parameter to the recurrence, defining T (n) = T (n, 1), where

T (n,α) = T (n/4,α/4) + T (3n/4,3α/4) +α.

In each complete level of the tree, the (weighted) node values sum to exactly 1. The leaves
of the recursion tree are at different levels, but all between log4 n and log4/3 n. So we have
upper and lower bounds log4 n≤ T (n)≤ log4/3 n, which differ by only a constant factor,
so T(n) = Θ(logn).

• Ham-sandwich trees: T(n) = T(n/2) + T(n/4) + 1

Again, we have a lopsided recursion tree. If we only look at complete levels, we find
that the level sums form an ascending geometric series T (n) = 1+2+4+ · · ·, so the solution

9
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is dominated by the number of leaves. The recursion tree has log4 n complete levels, so
there are more than 2log4 n = nlog4 2 =

p
n; on the other hand, every leaf has depth at most

log2 n, so the total number of leaves is at most 2log2 n = n. Unfortunately, the crude boundsp
n� T(n)� n are the best we can derive using the techniques we know so far!

The following theorem completely describes the solution for any divide-and-conquer recur-
rence in the ‘standard form’ T (n) = aT (n/b) + f (n), where a and b are constants and f (n) is a
polynomial. This theorem allows us to bypass recursion trees for “standard” divide-and-conquer
recurrences, but many people (including Jeff) find it harder to even remember the statement of
the theorem than to use the more powerful and general recursion-tree technique. Your mileage
may vary.

The Master Theorem. The recurrence T (n) = aT (n/b) + f (n) can be solved as follows.

• If a f (n/b) = κ f (n) for some constant κ < 1, then T (n) = Θ( f (n)).

• If a f (n/b) = K f (n) for some constant K > 1, then T (n) = Θ(nlogb a).

• If a f (n/b) = f (n), then T (n) = Θ( f (n) logb n).

• If none of these three cases apply, you’re on your own.

Proof: If f (n) is a constant factor larger than a f (b/n), then by induction, the level sums define
a descending geometric series. The sum of any geometric series is a constant times its largest
term. In this case, the largest term is the first term f (n).

If f (n) is a constant factor smaller than a f (b/n), then by induction, the level sums define an
ascending geometric series. The sum of any geometric series is a constant times its largest term.
In this case, this is the last term, which by our earlier argument is Θ(nlogb a).

Finally, if a f (b/n) = f (n), then by induction, each of the L + 1 terms in the sum is equal to
f (n), and the recursion tree has depth L = Θ(logb n). �

4 The Nuclear Bomb?

Finally, let me describe without proof a powerful generalization of the recursion tree method,
first published by Lebanese researchers Mohamad Akra and Louay Bazzi in 1998. Consider a
general divide-and-conquer recurrence of the form

T (n) =
k
∑

i=1

ai T (n/bi) + f (n),

where k is a constant, ai > 0 and bi > 1 are constants for all i, and f (n) = Ω(nc) and
f (n) = O(nd) for some constants 0 < c ≤ d. (As usual, we assume the standard base case
T (Θ(1)) = Θ(1)).) Akra and Bazzi prove that this recurrence has the closed-form asymptotic
solution

T (n) = Θ

�

nρ
�

1+

∫ n

1

f (u)
uρ+1

du

��

,

where ρ is the unique real solution to the equation

k
∑

i=1

ai/bρi = 1.

10
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In particular, the Akra-Bazzi theorem immediately implies the following form of the Master
Theorem:

T (n) = aT (n/b) + nc =⇒ T (n) =











Θ(nlogb a) if c < logb a− ε
Θ(nc log n) if c = logb a

Θ(nc) if c > logb a+ ε

The Akra-Bazzi theorem does not require that the parameters ai and bi are integers, or even
rationals; on the other hand, even when all parameters are integers, the characteristic equation
∑

i ai/bρi = 1 may have no analytical solution.
Here are a few examples of recurrences that are difficult (or impossible) for recursion trees,

but have easy solutions using the Akra-Bazzi theorem.

• Randomized quicksort: T(n) = T(3n/4) + T(n/4) + n

The equation (3/4)ρ + (1/4)ρ = 1 has the unique solution ρ = 1, and therefore

T (n) = Θ

�

n

�

1+

∫ n

1

1
u

du

��

= O(n log n).

• Deterministic selection: T(n) = T(n/5) + T(7n/10) + n

The equation (1/5)ρ + (7/10)ρ = 1 has no analytical solution. However, we easily observe
that (1/5)x + (7/10)x is a decreasing function of x , and therefore 0 < ρ < 1. Thus, we
have

∫ n

1

f (u)
uρ+1

du=

∫ n

1

u−ρ du=
u1−ρ

1−ρ

�

�

�

�

n

u=1
=

n1−ρ − 1
1−ρ

= Θ(n1−ρ),

and therefore
T (n) = Θ(nρ · (1+Θ(n1−ρ)) = Θ(n).

(A bit of numerical computation gives the approximate value ρ ≈ 0.83978, but why
bother?)

• Randomized search trees: T(n) =
1
4 T(n/4) +

3
4 T(3n/4) + 1

The equation 1
4(

1
4)
ρ + 3

4(
3
4)
ρ = 1 has the unique solution ρ = 0, and therefore

T (n) = Θ

�

1+

∫ n

1

1
u

du

�

= Θ(log n).

• Ham-sandwich trees: T(n) = T(n/2) + T(n/4) +1. Recall that we could only prove the
very weak bounds

p
n� T (n)� n using recursion trees. The equation (1/2)ρ+(1/4)ρ = 1

has the unique solution ρ = log2((1+
p

5)/2)≈ 0.69424, which can be obtained by setting
x = 2ρ and solving for x . Thus, we have

∫ n

1

1
uρ+1

du=
u−ρ

−ρ

�

�

�

�

n

u=1
=

1− n−ρ

ρ
= Θ(1)

and therefore
T (n) = Θ (nρ(1+Θ(1))) = Θ(nlgφ).

11
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The Akra-Bazzi method is that it can solve almost any divide-and-conquer recurrence with
just a few lines of calculation. (There are a few nasty exceptions like T (n) =

p
n T (
p

n) + n
where we have to fall back on recursion trees.) On the other hand, the steps appear to be magic,
which makes the method hard to remember, and for most divide-and-conquer recurrences that
arise in practice, there are much simpler solution techniques.

5 Linear Recurrences (Annihilators)?

Another common class of recurrences, called linear recurrences, arises in the context of recursive
backtracking algorithms and counting problems. These recurrences express each function value
f (n) as a linear combination of a small number of nearby values f (n− 1), f (n− 2), f (n− 3), . . ..
The Fibonacci recurrence is a typical example:

F(n) =











0 if n= 0

1 if n= 1

F(n− 1) + F(n− 2) otherwise

It turns out that the solution to any linear recurrence is a simple combination of polynomial
and exponential functions in n. For example, we can verify by induction that the linear recurrence

T (n) =











1 if n= 0

0 if n= 1 or n= 2

3T (n− 1)− 8T (n− 2) + 4T (n− 3) otherwise

has the closed-form solution T(n) = (n − 3)2n + 4. First we check the base cases:

T (0) = (0− 3)20 + 4= 1 Ø

T (1) = (1− 3)21 + 4= 0 Ø

T (2) = (2− 3)22 + 4= 0 Ø

And now the recursive case:

T (n) = 3T (n− 1)− 8T (n− 2) + 4T (n− 3)

= 3((n− 4)2n−1 + 4)− 8((n− 5)2n−2 + 4) + 4((n− 6)2n−3 + 4)

=
�

3
2
−

8
4
+

4
8

�

n · 2n −
�

12
2
−

40
4
+

24
8

�

2n + (2− 8+ 4) · 4

= (n− 3) · 2n + 4 Ø

But how could we have possibly come up with that solution? In this section, I’ll describe a general
method for solving linear recurrences that’s arguably easier than the induction proof!

5.1 Operators

Our technique for solving linear recurrences relies on the theory of operators. Operators are
higher-order functions, which take one or more functions as input and produce different functions
as output. For example, your first two semesters of calculus focus almost exclusively on the
differential and integral operators d

d x and
∫

d x . All the operators we will need are combinations
of three elementary building blocks:

12
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• Sum: ( f + g)(n) := f (n) + g(n)

• Scale: (α · f )(n) := α · ( f (n))
• Shift: (E f )(n) := f (n+ 1)

The shift and scale operators are linear, which means they can be distributed over sums; for
example, for any functions f , g, and h, we have E( f − 3(g − h)) = E f + (−3)E g + 3Eh.

We can combine these building blocks to obtain more complex compound operators. For
example, the compound operator E − 2 is defined by setting (E − 2) f := E f + (−2) f for any
function f . We can also apply the shift operator twice: (E(E f ))(n) = f (n+ 2); we write usually
E2 f as a synonym for E(E f ). More generally, for any positive integer k, the operator Ek shifts
its argument k times: Ek f (n) = f (n + k). Similarly, (E − 2)2 is shorthand for the operator
(E − 2)(E − 2), which applies (E − 2) twice.

For example, here are the results of applying different operators to the exponential function
f (n) = 2n:

2 f (n) = 2 · 2n = 2n+1

3 f (n) = 3 · 2n

E f (n) = 2n+1

E2 f (n) = 2n+2

(E − 2) f (n) = E f (n)− 2 f (n) = 2n+1 − 2n+1 = 0

(E2 − 1) f (n) = E2 f (n)− f (n) = 2n+2 − 2n = 3 · 2n

These compound operators can be manipulated exactly as though they were polynomials
over the “variable” E. In particular, we can factor compound operators into “products” of simpler
operators, which can be applied in any order. For example, the compound operators E2 − 3E + 2
and (E − 1)(E − 2) are equivalent:

Let g(n) := (E − 2) f (n) = f (n+ 1)− 2 f (n).

Then (E − 1)(E − 2) f (n) = (E − 1)g(n)

= g(n+ 1)− g(n)

= ( f (n+ 2)− 2 f (n− 1))− ( f (n+ 1)− 2 f (n))

= f (n+ 2)− 3 f (n+ 1) + 2 f (n)

= (E2 − 3E + 2) f (n). Ø

It is an easy exercise to confirm that E2−3E +2 is also equivalent to the operator (E −2)(E −1).
The following table summarizes everything we need to remember about operators.

Operator Definition

addition ( f + g)(n) := f (n) + g(n)
subtraction ( f − g)(n) := f (n)− g(n)

multiplication (α · f )(n) := α · ( f (n))
shift E f (n) := f (n+ 1)

k-fold shift Ek f (n) := f (n+ k)
composition (X + Y ) f := X f + Y f

(X − Y ) f := X f − Y f
XY f := X(Y f ) = Y (X f )

distribution X( f + g) = X f + X g

13
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5.2 Annihilators

An annihilator of a function f is any nontrivial operator that transforms f into the zero function.
(We can trivially annihilate any function by multiplying it by zero, so as a technical matter, we
do not consider the zero operator to be an annihilator.) Every compound operator we consider
annihilates a specific class of functions; conversely, every function composed of polynomial and
exponential functions has a unique (minimal) annihilator.

We have already seen that the operator (E − 2) annihilates the function 2n. It’s not hard to
see that the operator (E − c) annihilates the function α · cn, for any constants c and α. More
generally, the operator (E − c) annihilates the function an if and only if c = a:

(E − c)an = Ean − c · an = an+1 − c · an = (a− c)an.

Thus, (E − 2) is essentially the only annihilator of the function 2n.
What about the function 2n+3n? The operator (E−2) annihilates the function 2n, but leaves

the function 3n unchanged. Similarly, (E − 3) annihilates 3n while negating the function 2n. But
if we apply both operators, we annihilate both terms:

(E − 2)(2n + 3n) = E(2n + 3n)− 2(2n + 3n)

= (2n+1 + 3n+1)− (2n+1 + 2 · 3n) = 3n

=⇒ (E − 3)(E − 2)(2n + 3n) = (E − 3)3n = 0

In general, for any integers a 6= b, the operator (E−a)(E−b) = (E−b)(E−a) = (E2−(a+b)E+ab)
annihilates any function of the form αan + β bn, but nothing else.

What about the operator (E−a)(E−a) = (E−a)2? It turns out that this operator annihilates
all functions of the form (αn+ β)an:

(E − a)((αn+ β)an) = (α(n+ 1) + β)an+1 − a(αn+ β)an

= αan+1

=⇒ (E − a)2((αn+ β)an) = (E − a)(αan+1) = 0

More generally, the operator (E − a)d annihilates all functions of the form p(n) · an, where p(n)
is a polynomial of degree at most d − 1. For example, (E − 1)3 annihilates any polynomial of
degree at most 2.

The following table summarizes everything we need to remember about annihilators.

Operator Functions annihilated

E − 1 α

E − a αan

(E − a)(E − b) αan + β bn [if a 6= b]
(E − a0)(E − a1) · · · (E − ak)

∑k
i=0αia

n
i [if ai distinct]

(E − 1)2 αn+ β
(E − a)2 (αn+ β)an

(E − a)2(E − b) (αn+ β)ab + γbn [if a 6= b]
(E − a)d

�∑d−1
i=0 αin

i
�

an

If X annihilates f , then X also annihilates E f .
If X annihilates both f and g, then X also annihilates f ± g.

If X annihilates f , then X also annihilates α f , for any constant α.

If X annihilates f and Y annihilates g, then XY annihilates f ± g.

14
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5.3 Annihilating Recurrences

Given a linear recurrence for a function, it’s easy to extract an annihilator for that function. For
many recurrences, we only need to rewrite the recurrence in operator notation. Once we have
an annihilator, we can factor it into operators of the form (E − c); the table on the previous page
then gives us a generic solution with some unknown coefficients. If we are given explicit base
cases, we can determine the coefficients by examining a few small cases; in general, this involves
solving a small system of linear equations. If the base cases are not specified, the generic solution
almost always gives us an asymptotic solution. Here is the technique step by step:

1. Write the recurrence in operator form
2. Extract an annihilator for the recurrence
3. Factor the annihilator (if necessary)
4. Extract the generic solution from the annihilator
5. Solve for coefficients using base cases (if known)

Here are several examples of the technique in action:

• r (n) = 5r (n − 1), where r (0) = 3.

1. We can write the recurrence in operator form as follows:

r(n) = 5r(n− 1) =⇒ r(n+ 1)− 5r(n) = 0 =⇒ (E − 5)r(n) = 0.

2. We immediately see that (E − 5) annihilates the function r(n).

3. The annihilator (E − 5) is already factored.

4. Consulting the annihilator table on the previous page, we find the generic solution
r(n) = α5n for some constant α.

5. The base case r(0) = 3 implies that α= 3.

We conclude that r (n) = 3 ·5n . We can easily verify this closed-form solution by induction:

r(0) = 3 · 50 = 3 Ø [definition]

r(n) = 5r(n− 1) [definition]

= 5 · (3 · 5n−1) [induction hypothesis]

= 5n · 3 Ø [algebra]

• Fibonacci numbers: F(n) = F(n − 1) + F(n − 2), where F(0) = 0 and F(1) = 1.

1. We can rewrite the recurrence as (E2 − E − 1)F(n) = 0.

2. The operator E2 − E − 1 clearly annihilates F(n).

3. The quadratic formula implies that the annihilator E2−E−1 factors into (E−φ)(E−φ̂),
where φ = (1+

p
5)/2≈ 1.618034 is the golden ratio and φ̂ = (1−

p
5)/2= 1−φ =

−1/φ ≈ −0.618034.

4. The annihilator implies that F(n) = αφn + α̂φ̂n for some unknown constants α and
α̂.
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5. The base cases give us two equations in two unknowns:

F(0) = 0= α+ α̂

F(1) = 1= αφ + α̂φ̂

Solving this system of equations gives us α= 1/(2φ − 1) = 1/
p

5 and α̂= −1/
p

5.

We conclude with the following exact closed form for the nth Fibonacci number:

F(n) =
φn − φ̂n

p
5

=
1
p

5

�

1+
p

5

2

�n

−
1
p

5

�

1−
p

5

2

�n

With all the square roots in this formula, it’s quite amazing that Fibonacci numbers are
integers. However, if we do all the math correctly, all the square roots cancel out when i is
an integer. (In fact, this is pretty easy to prove using the binomial theorem.)

• Towers of Hanoi: T(n) = 2T(n − 1) + 1, where T(0) = 0. This is our first example of a
non-homogeneous recurrence, which means the recurrence has one or more non-recursive
terms.

1. We can rewrite the recurrence as (E − 2)T (n) = 1.

2. The operator (E−2) doesn’t quite annihilate the function; it leaves a residue of 1. But
we can annihilate the residue by applying the operator (E − 1). Thus, the compound
operator (E − 1)(E − 2) annihilates the function.

3. The annihilator is already factored.

4. The annihilator table gives us the generic solution T (n) = α2n+β for some unknown
constants α and β .

5. The base cases give us T (0) = 0 = α20 + β and T (1) = 1 = α21 + β . Solving this
system of equations, we find that α= 1 and β = −1.

We conclude that T(n) = 2n − 1.

For the remaining examples, I won’t explicitly enumerate the steps in the solution.

• Height-balanced trees: H(n) = H(n − 1) + H(n − 2) + 1, where H(−1) = 0 and
H(0) = 1. (Yes, we’re starting at −1 instead of 0. So what?)

We can rewrite the recurrence as (E2 − E − 1)H = 1. The residue 1 is annihilated by
(E − 1), so the compound operator (E − 1)(E2 − E − 1) annihilates the recurrence. This
operator factors into (E − 1)(E −φ)(E − φ̂), where φ = (1+

p
5)/2 and φ̂ = (1−

p
5)/2.

Thus, we get the generic solution H(n) = α ·φn + β + γ · φ̂n, for some unknown constants
α, β , γ that satisfy the following system of equations:

H(−1) = 0= αφ−1 + β + γφ̂−1 = α/φ + β − γ/φ̂

H(0) = 1= αφ0 + β + γφ̂0 = α+ β + γ

H(1) = 2= αφ1 + β + γφ̂1 = αφ + β + γφ̂

Solving this system (using Cramer’s rule or Gaussian elimination), we find that α =
(
p

5+ 2)/
p

5, β = −1, and γ= (
p

5− 2)/
p

5. We conclude that

H(n) =
p

5+ 2
p

5

�

1+
p

5

2

�n

− 1+
p

5− 2
p

5

�

1−
p

5

2

�n

.
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• T(n) = 3T(n − 1)− 8T(n − 2) + 4T(n − 3), where T(0) = 1, T(1) = 0, and T(2) = 0.
This was our original example of a linear recurrence.

We can rewrite the recurrence as (E3−3E2+8E−4)T = 0, so we immediately have an
annihilator E3−3E2+8E−4. Using high-school algebra, we can factor the annihilator into
(E − 2)2(E − 1), which implies the generic solution T (n) = αn2n +β2n + γ. The constants
α, β , and γ are determined by the base cases:

T (0) = 1 = α · 0 · 20 + β20 + γ = β + γ

T (1) = 0 = α · 1 · 21 + β21 + γ = 2α+ 2β + γ

T (2) = 0 = α · 2 · 22 + β22 + γ = 8α+ 4β + γ

Solving this system of equations, we find that α = 1, β = −3, and γ = 4, so T(n) =
(n − 3)2n + 4.

• T(n) = T(n − 1) + 2T(n − 2) + 2n − n2

We can rewrite the recurrence as (E2 − E − 2)T (n) = E2(2n − n2). Notice that we
had to shift up the non-recursive parts of the recurrence when we expressed it in this
form. The operator (E − 2)(E − 1)3 annihilates the residue 2n − n2, and therefore also
annihilates the shifted residue E2(2n+ n2). Thus, the operator (E −2)(E −1)3(E2− E −2)
annihilates the entire recurrence. We can factor the quadratic factor into (E − 2)(E + 1),
so the annihilator factors into (E − 2)2(E − 1)3(E + 1). So the generic solution is T(n) =
αn2n +β2n +γn2+δn+ ε+η(−1)n . The coefficients α, β , γ, δ, ε, η satisfy a system of
six equations determined by the first six function values T (0) through T (5). For almost²
every set of base cases, we have α 6= 0, which implies that T(n) = Θ(n2n).

For a more detailed explanation of the annihilator method, see George Lueker, Some
techniques for solving recurrences, ACM Computing Surveys 12(4):419-436, 1980.

6 Transformations

Sometimes we encounter recurrences that don’t fit the structures required for recursion trees or
annihilators. In many of those cases, we can transform the recurrence into a more familiar form,
by defining a new function in terms of the one we want to solve. There are many different kinds
of transformations, but these three are probably the most useful:

• Domain transformation: Define a new function S(n) = T ( f (n))with a simpler recurrence,
for some simple function f .

• Range transformation: Define a new function S(n) = f (T (n)) with a simpler recurrence,
for some simple function f .

• Difference transformation: Simplify the recurrence for T (n) by considering the difference
function ∆T (n) = T (n)− T (n− 1).

Here are some examples of these transformations in action.

²In fact, the only possible solutions with α= 0 have the form −2n−1 − n2/2− 5n/2+η(−1)n for some constant η.
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• Unsimplified Mergesort: T(n) = T(dn/2e) + T(bn/2c) +Θ(n)

When n is a power of 2, we can simplify the mergesort recurrence to T (n) = 2T (n/2)+
Θ(n), which has the solution T (n) = Θ(n log n). Unfortunately, for other values values of
n, this simplified recurrence is incorrect. When n is odd, then the recurrence calls for us
to sort a fractional number of elements! Worse yet, if n is not a power of 2, we will never
reach the base case T (1) = 1.

So we really need to solve the original recurrence. We have no hope of getting an exact
solution, even if we ignore the Θ( ) in the recurrence; the floors and ceilings will eventually
kill us. But we can derive a tight asymptotic solution using a domain transformation—we
can rewrite the function T (n) as a nested function S( f (n)), where f (n) is a simple function
and the function S( ) has an simpler recurrence.

First let’s overestimate the time bound, once by pretending that the two subproblem
sizes are equal, and again to eliminate the ceiling:

T (n)≤ 2T
�

dn/2e
�

+ n≤ 2T (n/2+ 1) + n.

Now we define a new function S(n) = T (n+α), where α is a unknown constant, chosen so
that S(n) satisfies the Master-Theorem-ready recurrence S(n)≤ 2S(n/2) +O(n). To figure
out the correct value of α, we compare two versions of the recurrence for the function
T (n+α):

S(n)≤ 2S(n/2) +O(n) =⇒ T (n+α)≤ 2T (n/2+α) +O(n)

T (n)≤ 2T (n/2+ 1) + n =⇒ T (n+α)≤ 2T ((n+α)/2+ 1) + n+α

For these two recurrences to be equal, we need n/2+α = (n+α)/2+ 1, which implies
that α= 2. The Master Theorem now tells us that S(n) = O(n log n), so

T (n) = S(n− 2) = O((n− 2) log(n− 2)) = O(n log n).

A similar argument implies the matching lower bound T (n) = Ω(n log n). So T(n) =
Θ(n logn) after all, just as though we had ignored the floors and ceilings from the
beginning!

Domain transformations are useful for removing floors, ceilings, and lower order terms
from the arguments of any recurrence that otherwise looks like it ought to fit either the
Master Theorem or the recursion tree method. But now that we know this, we don’t need
to bother grinding through the actual gory details!

• Ham-Sandwich Trees: T(n) = T(n/2) + T(n/4) + 1

As we saw earlier, the recursion tree method only gives us the uselessly loose boundsp
n� T (n)� n for this recurrence, and the recurrence is in the wrong form for annihilators.

The authors who discovered ham-sandwich trees (Yes, this is a real data structure!) solved
this recurrence by guessing the solution and giving a complicated induction proof. We got
a tight solution using the Akra-Bazzi method, but who can remember that?

In fact, a simple domain transformation allows us to solve the recurrence in just a few
lines. We define a new function t(k) = T (2k), which satisfies the simpler linear recurrence
t(k) = t(k−1)+ t(k− 2)+1. This recurrence should immediately remind you of Fibonacci
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numbers. Sure enough, the annihilator method implies the solution t(k) = Θ(φk), where
φ = (1+

p
5)/2 is the golden ratio. We conclude that

T (n) = t(lg n) = Θ(φlg n) = Θ(nlgφ)≈ Θ(n0.69424).

This is the same solution we obtained earlier using the Akra-Bazzi theorem.

Many other divide-and-conquer recurrences can be similarly transformed into linear
recurrences and then solved with annihilators. Consider once more the simplified mergesort
recurrence T (n) = 2T (n/2) + n. The function t(k) = T (2k) satisfies the recurrence
t(k) = 2t(k−1)+2k. The annihilator method gives us the generic solution t(k) = Θ(k ·2k),
which implies that T (n) = t(lg n) = Θ(n log n), just as we expected.

On the other hand, for some recurrences like T (n) = T (n/3)+T (2n/3)+n, the recursion
tree method gives an easy solution, but there’s no way to transform the recurrence into a
form where we can apply the annihilator method directly.³

• Random Binary Search Trees: T(n) =
1
4 T(n/4) +

3
4 T(3n/4) + 1

This looks like a divide-and-conquer recurrence, so we might be tempted to apply
recursion trees, but what does it mean to have a quarter of a child? If we’re not comfortable
with weighted recursion trees (or the Akra-Bazzi theorem), we can instead apply the
following range transformation. The function U(n) = n · T (n) satisfies the more palatable
recurrence U(n) = U(n/4) + U(3n/4) + n. As we’ve already seen, recursion trees imply
that U(n) = Θ(n log n), which immediately implies that T(n) = Θ(logn).

• Randomized Quicksort: T(n) =
2

n

n−1
∑

k=0

T(k) + n

This is our first example of a full history recurrence; each function value T (n) is defined
in terms of all previous function values T (k) with k < n. Before we can apply any of our
existing techniques, we need to convert this recurrence into an equivalent limited history
form by shifting and subtracting away common terms. To make this step slightly easier, we
first multiply both sides of the recurrence by n to get rid of the fractions.

n · T (n) = 2
n−1
∑

k=0

T ( j) + n2 [multiply both sides by n]

(n− 1) · T (n− 1) = 2
n−2
∑

k=0

T ( j) + (n− 1)2 [shift]

nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + 2n− 1 [subtract]

T (n) =
n+ 1

n
T (n− 1) + 2−

1
n

[simplify]

³However, we can still get a solution via functional transformations as follows. The function t(k) = T ((3/2)k)
satisfies the recurrence t(n) = t(n− 1) + t(n− λ) + (3/2)k, where λ = log3/2 3 = 2.709511 . . .. The characteristic
function for this recurrence is (rλ − rλ−1 − 1)(r − 3/2), which has a double root at r = 3/2 and nowhere else. Thus,
t(k) = Θ(k(3/2)k), which implies that T (n) = t(log3/2 n) = Θ(n log n). This line of reasoning is the core of the
Akra-Bazzi method.
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We can solve this limited-history recurrence using another functional transformation.
We define a new function t(n) = T (n)/(n+ 1), which satisfies the simpler recurrence

t(n) = t(n− 1) +
2

n+ 1
−

1
n(n+ 1)

,

which we can easily unroll into a summation. If we only want an asymptotic solution, we
can simplify the final recurrence to t(n) = t(n− 1) +Θ(1/n), which unrolls into a very
familiar summation:

t(n) =
n
∑

i=1

Θ(1/i) = Θ(Hn) = Θ(log n).

Finally, substituting T (n) = (n + 1)t(n) gives us a solution to the original recurrence:
T(n) = Θ(n logn).

Exercises

1. For each of the following recurrences, first guess an exact closed-form solution, and then
prove your guess is correct. You are free to use any method you want to make your guess—
unrolling the recurrence, writing out the first several values, induction proof template,
recursion trees, annihilators, transformations, ‘It looks like that other one’, whatever—but
please describe your method. All functions are from the non-negative integers to the reals.
If it simplifies your solutions, express them in terms of Fibonacci numbers Fn, harmonic
numbers Hn, binomial coefficients

�n
k

�

, factorials n!, and/or the floor and ceiling functions
bxc and dxe.

(a) A(n) = A(n− 1) + 1, where A(0) = 0.

(b) B(n) =

¨

0 if n< 5

B(n− 5) + 2 otherwise

(c) C(n) = C(n− 1) + 2n− 1, where C(0) = 0.

(d) D(n) = D(n− 1) +
�n

2

�

, where D(0) = 0.

(e) E(n) = E(n− 1) + 2n, where E(0) = 0.

(f) F(n) = 3 · F(n− 1), where F(0) = 1.

(g) G(n) = G(n−1)
G(n−2) , where G(0) = 1 and G(1) = 2. [Hint: This is easier than it looks.]

(h) H(n) = H(n− 1) + 1/n, where H(0) = 0.

(i) I(n) = I(n − 2) + 3/n, where I(0) = I(1) = 0. [Hint: Consider even and odd n
separately.]

(j) J(n) = J(n− 1)2, where J(0) = 2.

(k) K(n) = K(bn/2c) + 1, where K(0) = 0.

(l) L(n) = L(n− 1) + L(n− 2), where L(0) = 2 and L(1) = 1.
[Hint: Write the solution in terms of Fibonacci numbers.]

(m) M(n) = M(n− 1) ·M(n− 2), where M(0) = 2 and M(1) = 1.
[Hint: Write the solution in terms of Fibonacci numbers.]
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(n) N(n) = 1+
n
∑

k=1
(N(k− 1) + N(n− k)), where N(0) = 1.

(p) P(n) =
n−1
∑

k=0
(k · P(k− 1)), where P(0) = 1.

(q) Q(n) = 1
2−Q(n−1) , where Q(0) = 0.

(r) R(n) = max
1≤k≤n

{R(k− 1) + R(n− k) + n}

(s) S(n) = max
1≤k≤n

{S(k− 1) + S(n− k) + 1}

(t) T (n) = min
1≤k≤n

{T (k− 1) + T (n− k) + n}

(u) U(n) = min
1≤k≤n

{U(k− 1) + U(n− k) + 1}

(v) V (n) = max
n/3≤k≤2n/3

{V (k− 1) + V (n− k) + n}

2. Use recursion trees or the Akra-Bazzi theorem to solve each of the following recurrences.

(a) A(n) = 2A(n/4) +
p

n

(b) B(n) = 2B(n/4) + n

(c) C(n) = 2C(n/4) + n2

(d) D(n) = 3D(n/3) +
p

n

(e) E(n) = 3E(n/3) + n

(f) F(n) = 3F(n/3) + n2

(g) G(n) = 4G(n/2) +
p

n

(h) H(n) = 4H(n/2) + n

(i) I(n) = 4I(n/2) + n2

(j) J(n) = J(n/2) + J(n/3) + J(n/6) + n

(k) K(n) = K(n/2) + K(n/3) + K(n/6) + n2

(l) L(n) = L(n/15) + L(n/10) + 2L(n/6) +
p

n

?(m) M(n) = 2M(n/3) + 2M(2n/3) + n

(n) N(n) =
p

2n N(
p

2n) +
p

n

(p) P(n) =
p

2n P(
p

2n) + n

(q) Q(n) =
p

2nQ(
p

2n) + n2

(r) R(n) = R(n− 3) + 8n — Don’t use annihilators!

(s) S(n) = 2S(n− 2) + 4n — Don’t use annihilators!

(t) T (n) = 4T (n− 1) + 2n — Don’t use annihilators!
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3. Make up a bunch of linear recurrences and then solve them using annihilators.

4. Solve the following recurrences, using any tricks at your disposal.

(a) T (n) =
lg n
∑

i=1

T (n/2i) + n [Hint: Assume n is a power of 2.]

(b) More to come. . .
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