
Mille viae ducunt homines per saecula Romam.
[A thousand roads lead men forever to Rome.]

— Alain de Lille Liber Parabolarum (1175)
I study my Bible as I gather apples.
First I shake the whole tree, that the ripest might fall.
Then I climb the tree and shake each limb,
and then each branch and then each twig,
and then I look under each leaf.

— attributed to Martin Luther (c. 1500)
Thus you see, most noble Sir, how this type of solution bears little relationship to
mathematics, and I do not understand why you expect a mathematician to produce it,
rather than anyone else, for the solution is based on reason alone, and its discovery
does not depend on any mathematical principle. Because of this, I do not know why
even questions which bear so little relationship to mathematics are solved more
quickly by mathematicians than by others.

— Leonhard Euler, describing the Königsburg bridge problemin a letter to Carl Leonhard Gottlieb Ehler (April 3, 1736)

CHAPTER 5
Basic Graph Algorithms

5.1 Introduction and History

A graph is a collection of pairs—pairs of integers, pairs of people, pairs of cities, pairs
of stars, pairs of countries, pairs of scientific papers, pairs of web pages, pairs of game
positions, pairs of recursive subproblems, even pairs of graphs. Mirroring the most
common method for visualizing graphs, the underlying objects being paired are usually
called vertices or nodes, and the pairs themselves are called edges or (more rarely) arcs,
but in fact the objects and pairs can be anything at all.

One of the earliest examples of graphs are road networks and maps thereof. Roman
engineers constructed a network of more than 400000km of public roads across Europe,
western and central Asia, and northern Africa during the height of the Roman empire.
Travelers would carry itinerariae, which were either maps or simple lists of the cities,
milestones, and branches along local roads. The largest surviving itineraria is the Tabula

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision. 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

5. BASIC GRAPH ALGORITHMS

Peutingeriana, a 13th-century scroll copy of a 5th-century revision of a 1st-century survey
of the Roman cursus publicus, stretching from Scotland to southern India, commissioned
during the reign of Augustus Caesar. The Tabula Peutingeriana is not a geographically
accurate map, but an abstract representation of the road network, similar to a modern
subway map. Cities along each road are indicated by kinks in the curve representing that
road; the names of these cites and the lengths of road segments between them are also
indicated on the map. Thus, the map contains enough information to find the shortest
route between any two cities in the 5th-century Roman empire.

Figure 5.1. A small excerpt of Konrad Miller’s 1872 restoriation of the Tabula Peutingeriana, showing the Romanroad frommodern-day Birten (Veteribus, top left) through Köln (Agripina) and Bonn (Bonnae) toMainz (Mogontiaco,top right), with branches to Trier (Avg Tresvirorvm, center) and Metz (Matricorum, bottom center). The name Parisiin red refers erroneously to the Celtic tribe; in fact the Parisii territory was nowhere near Veteribus.
Graphs are also used in astronomical charts to indicate constellations and other

structures. One of the oldest known examples of such a chart is a scroll drawn during
the early Tang Dynasty circa 650ad and discovered in 1907 in Dunhuang, a town on the
ancient Silk Road in northern China. The Dunhuang star chart indicates the positions
and magnitudes of 1339 stars, grouped into 257 asterisms (constellations), with each
asterism indicated by lines joining nearby stars. Thus, each component of the graph is
an asterism. A similar but less detailed star chart, discovered only in 1998, was painted
on the wall of the Kitora Tomb in Asuka, Japan, in the late 7th or early 8th century.In
both of these maps, the graph structure is imposed primarily as a mnemonic device; the
components of the graph are the asterisms.¹

Perhaps the oldest classical use of graphs—and specifically trees—is in representing
genealogies. One of the oldest examples is the Tree of Jesse, which traces the patrilineal
line of descent from Jesse, the father of King David, to Jesus in the books of Matthew
and Luke. This lineage is illustrated as a tree (a literal plant, with leaves and branches)
in hundreds of bibles, psalters, paintings, stained glass windows, and stone carvings,
starting as early as the 11th century.

More complex family “trees” have been used for centuries to settle legal questions
about marriage, inheritance, and royal succession. For example, civil law in the Roman

1The use of graphs to indicate constellations is a relatively modern practice in Western astronomy.
Medieval and Renaissance European star charts indicated constellations by overlaying a realistic mnemonic
image over each constellation—a bear for Ursa Major, a swan for Cygnus, a hunter for Orion, and so on.

2

5.1. Introduction and History

Figure 5.2. An exceprt of the Dunhuang star chart, showing constellations near the north celestial pole. TheNorthern Dipper—known in America as the Big Dipper—can be seen near the bottom of the image.

empire, later adopted as anon law by the early Catholic Church, forbade marriage
between first cousins or closer relatives. In the early ninth century, the Church changed
both the required distance and the method of computation. Where the Roman computatio
legalis required the sum of the distances to the nearest common ancestor to be at least
four, the newer computatio canonica required the maximum of the two distances to be at
least seven. In 1215, bowing to practical considerations (and actual practice), the Church
relaxed the minimum required distance for marriage to four.²

Figure 5.3. Two diagrams describing a complex marriage case, from an anonymous 15th-century treatise onJohannes Andreae’s Super arboribus consanguinitatis et affinitatis, an early 14th-century treatise on canon law.From a gallery of “Legal Trees” published by the Yale Law Library under a Creative Commons Licence.
2During the 11th and 12th centuries, this restriction gradually expanded to include up to four links by

affinity, initially through marriage, and later through extra-marital sex, betrothal, and even godparenting.
For example, marriage between a man and his sister’s husband’s sister’s husband’s sister was formally
forbidden, as was a marriage between a widower and his son’s wife’s widowed mother. These affinity
requirements were significantly reduced but not eliminated in 1215; the Church only abandoned the concept
of affinity ex copula illicita in 1917.

3

https://www.flickr.com/photos/yalelawlibrary/14308584836/in/album-72157621954683764/
https://www.flickr.com/photos/yalelawlibrary/albums/72157621954683764

5. BASIC GRAPH ALGORITHMS

Of course, there are many other familiar examples of graphs, like mazes (introduced
in their modern form by Giovanni Fontana circa 1420), Leonard Euler’s well-known
partial³ solution to the Bridges of Königsburg puzzle (1735) or his less well-known
solution the knight’s tour problem (1759), telegraph and other communication networks
(first proposed in 1753, developed by Ronalds, Schilling, Gauss, Weber, and others in the
early 1800s, and deployed worldwide by the late 1800s), electrical circuits (formalized in
the early 1800s by Ohm, Maxwell, Kirchoff, and others), molecular structural formulas
(introduced independently by August Kekulé in 1857 and Archibald Couper in 1858),
social networks (first studied in the mid-1930s by sociologist Jacob Moreno), digital
electronic circuits (proposed by Charles Sanders Pierce in 1886, and cast into their
modern form by Claude Shannon in 1937), and yeah, okay, if you insist, the internet.

The word “graph” for the abstract mathematical was coined by J. J. Sylvester in
1878, who adapted Kekulé’s “chemicographs” to describe certain algebraic invariants,
at the suggestion of his colleague William Clifford. The word “tree” was first used for
connected acyclic graphs by Arthur Cayley in 1857, although the abstract concept of trees
had already been used by Gustav Kirchoff and Karl von Staudt ten years earlier. The first
textbook on graph theory was published by Dénes Kőnig in 1936.

5.2 Vocabulistics

Formally, a (simple) graph is a pair of sets (V, E), where V is an arbitrary non-empty
finite set, whose elements are called vertices⁴ or nodes, and E is a set of pairs of elements
of V , which we call edges or (more rarely) arcs. In an undirected graph, the edges are
unordered pairs, or just sets of size two; I usually write uv instead of {u, v} to denote
the undirected edge between u and v. In a directed graph, the edges are ordered pairs
of vertices; I usually write u�v instead of (u, v) to denote the directed edge from u to v.

Following standard (but admittedly confusing) practice, I will also use V to denote
the number of vertices in a graph, and E to denote the number of edges. Thus, in
any undirected graph we have 0 ≤ E ≤

�V
2

�

, and in any directed graph we have
0≤ E ≤ V (V − 1).

The endpoints of an edge uv or u�v are its vertices u and v. We distinguish between
the endpoints of a directed edge u�v by calling u the tail and v the head.

The definition of a graph as a pair of sets forbids multiple undirected edges with
the same endpoints, or multiple directed edges with the same head and the same tail.

3Euler dismissed the final step of his proof—actually finding an Euler tour of a graph when every vertex
has even degree—as obvious. In fact, Euler missed the requirement that the graph must be connected.

4The singular of the English word “vertices” is vertex. Simiarly, the singular of “matrices” is matrix,
and the singular of “indices” is index. Unless you’re speaking Italian, there is no such thing as a vertice,
matrice, indice, appendice, helice, apice, vortice, radice, simplice, codice, directrice, dominatrice, Unice,
Kleenice, Asterice, Obelice, Dogmatice, Getafice, Cacofonice, Vitalstatistice, Geriatrice, or Jimi Hendrice!
You will lose points for using any of these so-called words. If you have trouble remembering this rule, just
use the word “node”.

4

5.3. Abstract Representations and Examples

(The same directed graph can contain both a directed edge u�v and its reversal v�u.)
Similarly, the definition of an undirected edge as a set of vertices forbids an undirected
edge from a vertex to itself. Graphs without loops and parallel edges are often called
simple graphs; non-simple graphs are sometimes calledmultigraphs. Despite the formal
definitional gap, most algorithms for simple graphs extend to multigraphs with little or
no modification, and for that reason, I see no need for a formal definition here.

For any edge uv in an undirected graph, we call u a neighbor of v and vice versa.
The degree of a node is its number of neighbors. In directed graphs, we distinguish two
kinds of neighbors. For any directed edge u�v, we call u a predecessor or in-neighbor
of v and v a successor or out-neighbor of u. The in-degree of a node is the number of
predecessors; the out-degree is the number of successors.

A graph G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and E′ ⊆ E. A proper
subgraph of G is any subgraph other than G itself.

A walk in an undirected graph is a sequence of edges, where each successive pair of
edges shares one vertex. A walk is called a path if it visits each vertex at most once. For
any two vertices u and v in a graph G, we say that v is reachable from u if G contains a
walk (and therefore a path) between u and v. An undirected graph is connected if every
vertex is reachable from every other vertex. A disconnected graph consists of several
components, which are its maximal connected subgraphs; two vertices are in the same
component if and only if there is a path between them.⁵

A cycle is a path that starts and ends at the same vertex and has at least one edge.
An undirected graph is acyclic if no subgraph is a cycle; acyclic graphs are also called
forests. A tree is a connected acyclic graph, or equivalently, one component of a forest.
A spanning tree of an undirected graph G is a subgraph that is a tree and contains every
vertex of G. A graph has a spanning tree if and only if it is connected. A spanning forest
of G is a collection of spanning trees, one for each connected component of G.

We require slightly different definitions for directed graphs. A directed walk is a
sequence of directed edges, where the head of each edge is the tail of the next; a directed
path is a directed walk without repeated vertices. Vertex v is reachable from vertex u in
a directed graph G if and only if G contains a directed walk (and therefore a directed
path) from u to v. A directed graph is strongly connected if every vertex is reachable
from every other vertex. A directed graph is acyclic if it does not contain a directed
cycle; directed acyclic graphs are often called dags.

5.3 Abstract Representations and Examples

The most common way to visually represent graphs is by drawing them. A drawing of
a graph maps each vertex to a point in the plane (typically drawn as a small circle or
some other shape) and each edge to a curve or straight line segment between the two

5Components are sometimes called “connected components”, but this usage is redundant; components
are connected by definition.

5

5. BASIC GRAPH ALGORITHMS

vertices. A graph is planar if it has a drawing where no two edges cross; such a drawing
is also called an embedding.⁶ The same graph can have many different drawings, so
it is important not to confuse a particular drawing with the graph itself. In particular,
planar graphs can have non-planar drawings!

a b c d

e f g

h i

j

m

l

k

a

b c
d

e

f

g
h

i

j

m

l
k

Figure 5.4. Two drawings of the same disconnected planar graphwith 13 vertices, 19 edges, and two components.
However, drawings are not the only useful representation of graphs. For example, the

intersection graph of a collection of objects has a node for every object and an edge for
every intersecting pair. Whether a particular graph can be represented as an intersection
graph depends on what kind of object you want to use for the vertices. Different types
of objects—line segments, rectangles, circles, etc.—define different classes of graphs.
One particularly useful type of intersection graph is an interval graph, whose vertices are
intervals on the real line, with an edge between any two intervals that overlap.

a
b

d
c

e
f

g
h i km

j l
a

bc
d

g
f

e

i h
jk

l m

(a) (b)
Figure 5.5. The graph in Figure 5.4 is also the intersection graph of (a) a set of line segments and (b) a set ofcircles.

Another good example is the dependency graph of a recursive algorithm. Dependency
graphs are directed acyclic graphs. The vertices are all the distinct recursive subproblems
that arise when executing the algorithm on a particular input. There is an edge from
one subproblem to another if evaluating the second subproblem requires a recursive
evaluation of the first. For example, for the Fibonacci recurrence

Fn =











0 if n= 0,

1 if n= 1,

Fn−1 + Fn−2 otherwise,

the vertices of the dependency graph are the integers 0, 1,2, . . . , n, and the edges are the
pairs (i − 1)�i and (i − 2)�i for every integer i between 2 and n.

6Confusingly, the word “embedding” is often used as a synonym for “drawing”, even when the edges
intersect. Please don’t do that.

6

5.3. Abstract Representations and Examples

8

7

6

5

4

3

2

1

0

9

Figure 5.6. The dependency graph of the Fibonacci recurrence.

As a more complex example, consider the following recurrence, which solves a certain
sequence-alignment problem called edit distance; see the dynamic programming notes
for details:

Edit(i, j) =



























i if j = 0

j if i = 0

min











Edit(i − 1, j) + 1,

Edit(i, j − 1) + 1,

Edit(i − 1, j − 1) +
�

A[i] 6= B[j]
�











otherwise

The dependency graph of this recurrence is an m× n grid of vertices (i, j) connected
by vertical edges (i − 1, j)�(i, j), horizontal edges (i, j − 1)�(i, j), and diagonal edges
(i − 1, j − 1)�(i, j). Dynamic programming works efficiently for any recurrence that
has a reasonably small dependency graph; a proper evaluation order ensures that each
subproblem is visited after its predecessors.

Figure 5.7. The dependency graph of the edit distance recurrence.
Another interesting example is the configuration graph of a game, puzzle, or

mechanism like tic-tac-toe, checkers, the Rubik’s Cube, the Towers of Hanoi, or a Turing
machine. The vertices of the configuration graph are all the valid configurations of the
puzzle; there is an edge from one configuration to another if it is possible to transform
one configuration into the other with a simple move. (Obviously, the precise definition
depends on what moves are allowed.) Even for reasonably simple mechanisms, the
configuration graph can be extremely complex, and we typically only have access to
local information about the configuration graph.

7

5. BASIC GRAPH ALGORITHMS

Figure 5.8. The configuration graph of the 4-disk Tower of Hanoi.

Finite-state automata used in formal language theory can be modeled as labeled
directed graphs. Recall that a deterministic finite-state automaton is formally defined as
a 5-tuple M = (Σ,Q, s, A,δ), where Σ is a finite set called the alphabet, Q is a finite set of
states, s ∈ Q is the start state, A⊆ Q is the set of accepting states, and δ : Q×Σ→ Q is
a transition function. But it is often more useful to think of M as a directed graph GM
whose vertices are the states Q, and whose edges have the form q�δ(q, a) for every state
q ∈Q and symbol a ∈ Σ. Then basic questions about the language accepted by M can be
phrased as questions about the graph GM . For example, the language accepted by M is
empty if and only if there is no path in GM from the start state/vertex q0 to an accepting
state/vertex.

Finally, sometimes one graph can be used to implicitly represent other larger graphs.
A good example of this implicit representation is the subset construction used to convert
NFAs into DFAs. The subset construction can be generalized to arbitrary directed graphs
as follows. Given any directed graph G = (V, E), we can define a new directed graph
G′ = (2V , E′) whose vertices are all subsets of vertices in V , and whose edges E′ are
defined as follows:

E′ :=
�

A�B
�

� u�v ∈ E for some u ∈ A and v ∈ B
	

We can mechanically translate this definition into an algorithm to construct G′ from G,
but strictly speaking, this construction is unnecessary, because G is already an implicit
representation of G′. Viewed in this light, the incremental subset construction used to
convert NFAs to DFAs without unreachable states is just a breadth-first search of the
implicitly-represented DFA.

It’s important not to confuse any of these examples/representations with the actual
formal definition: A graph is a pair of sets (V, E), where V is an arbitrary non-empty
finite set, and E is a set of pairs (either ordered or unordered) of elements of V .

8

5.4. Data Structures

5.4 Data Structures

In practice, graphs are usually represented by one of two standard data structures:
adjacency lists and adjacency matrices. At a high level, both data structures are arrays
indexed by vertices; this requires that each vertex has a unique integer identifier
between 1 and V . In a formal sense, these integers are the vertices.

Adjacency Lists

By far the most common data structure for storing graphs is the adjacency list. An
adjacency list is an array of lists, each containing the neighbors of one of the vertices
(or the out-neighbors if the graph is directed).⁷ For undirected graphs, each edge uv is
stored twice, once in u’s neighbor list and once in v’s neighbor list; for directed graphs,
each edge u�v is stored only once, in the neighbor list of the tail u. For both types of
graphs, the overall space required for an adjacency list is O(V + E).

There are several different ways to represent these neighbor lists, but the standard
implementation uses a simple singly-linked list. The resulting data structure allows us
to list the (out-)neighbors of a node v takes O(1+ deg(v)) time; just scan v’s neighbor
list. Similarly, we can determine whether u�v is an edge in O(1 + deg(u)) time by
scanning the neighbor list of u. For undirected graphs, we can improve the time to
O(1 +min{deg(u), deg(v)}) by simultaneously scanning the neighbor lists of both u
and v, stopping either we locate the edge or when we fall of the end of a list.

a b c d e f g h i

b

e

a

e

b

f

c

g

a

b

e

b

i

e

e g

f

c

g

d

f

g

j k l m

h

c

g

f

c

d

l

m

k

j

l

m

j

l

j

k

a b c d

e f g

h i

j

m

l

k

Figure 5.9. An adjacency list for our example graph.

Of course, linked lists are not the only data structure we could use; any other
structure that supports searching, listing, insertion, and deletion will do. For example,
we can reduce the time to determine whether uv is an edge to O(1+ log(deg(u))) by

7Attentive students might notice that despite is name, an adjacency list is not a list. This nomenclature
is an example of the Red Herring Principle: In computer science, as in mathematics, a red herring is neither
necessarily red nor necessarily a fish.

9

5. BASIC GRAPH ALGORITHMS

using a balanced binary search tree to store the neighbors of u, or even to O(1) time by
using an appropriately constructed hash table.⁸

Adjacency Matrices

The other standard data structure for graphs is the adjacency matrix.⁹ The adjacency
matrix of a graph G is a V × V matrix of 0s and 1s, normally represented by a two-
dimensional array A[1 .. V, 1 .. V], where each entry indicates whether a particular edge
is present in G.

• If the graph is undirected, then A[u, v] :=
�

uv ∈ E
�

for all vertices u and v.

• If the graph is directed, then A[u, v] :=
�

u�v ∈ E
�

for all vertices u and v.

For undirected graphs, the adjacency matrix is always symmetric, meaning A[u, v] =
A[v, u] for all vertices u and v, because uv and vu are just different names for the same
edge, and the diagonal entries A[u, u] are all zeros. For directed graphs, the adjacency
matrix may or may not be symmetric, and the diagonal entries may or may not be zero.

a b c d e f g h i j k l m
a 0 1 0 0 1 0 0 0 0 0 0 0 0
b 1 0 1 0 1 1 0 0 0 0 0 0 0
c 0 1 0 1 0 1 1 0 0 0 0 0 0
d 0 0 1 0 0 0 1 0 0 0 0 0 0
e 1 1 0 0 0 1 1 1 0 0 0 0 0
f 0 1 1 0 1 0 1 0 0 0 0 0 0
g 0 0 1 1 1 1 0 0 1 0 0 0 0
h 0 0 0 0 1 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 1 0 0 0 0 0 0
j 0 0 0 0 0 0 0 0 0 0 1 1 1
k 0 0 0 0 0 0 0 0 0 1 0 1 0
l 0 0 0 0 0 0 0 0 0 1 1 0 1
m 0 0 0 0 0 0 0 0 0 1 0 1 0

a b c d

e f g

h i

j

m

l

k

Figure 5.10. An adjacency matrix for our example graph.
Given an adjacency matrix, we can decide in Θ(1) time whether two vertices are

connected by an edge just by looking in the appropriate slot in the matrix. We can also
list all the neighbors of a vertex in Θ(V) time by scanning the corresponding row (or
column). This running time is optimal in the worst case, but even if a vertex has few
neighbors, we still have to scan the entire row to find them all. Similarly, adjacency
matrices require Θ(V 2) space, regardless of how many edges the graph actually has, so
they are only space-efficient for very dense graphs.

8This is a lot more subtle than it sounds. Most popular hashing techniques do not guarantee fast query
times, and even most good hashing methods can guarantee only O(1) expected time. I discuss hashing in
gory detail in a different chapter.

9See footnote 1.

10

5.4. Data Structures

Comparison

Table 5.1 summarizes the performance of the various standard graph data structures.
Stars∗ indicate expected amortized time bounds for maintaining dynamic hash tables.¹⁰

Standard adjacency list Fast adjacency list Adjacency
(linked lists) (hash tables) matrix

Space Θ(V + E) Θ(V + E) Θ(V 2)

Test if uv ∈ E O(1+min{deg(u), deg(v)}) = O(V) O(1) O(1)
Test if u�v ∈ E O(1+ deg(u)) = O(V) O(1) O(1)

List v’s (out-)neighbors Θ(1+ deg(v)) = O(V) Θ(1+ deg(v)) = O(V) Θ(V)
List all edges Θ(V + E) Θ(V + E) Θ(V 2)
Insert edge uv O(1) O(1)∗ O(1)
Delete edge uv O(deg(u) + deg(v)) = O(V) O(1)∗ O(1)

Table 5.1. Analysis of basic operations on standard graph data structures.
At this point, one might reasonably wonder why anyone would ever use an adjacency

matrix; after all, adjacency lists with hash tables support the same operations in the same
time, using less space. The main reason is that for sufficiently dense graphs, adjacency
matrices are simpler and more efficient in practice, because they avoid the overhead
of chasing pointers and computing hash functions; they’re just contiguous blocks of
memory.

Similarly, why would anyone use linked lists in an adjacency list structure to store
neighbors, instead of balanced binary search trees or hash tables? Although the primary
reason in practice is almost surely tradition—If they were good enough for Donald
Knuth’s code, they should be good enough for yours!—there are some more principled
arguments for storing neighbors in linked lists. One is that standard adjacency lists are
in fact good enough for most applications. Most standard graph algorithms never (or
rarely) actually ask whether an arbitrary edge is present or absent, or attempt to insert
or delete edges, and so optimizing the data structures to support those operations is
pointless.

But in my opinion, the most compelling reason for both standard data structures
is that many graphs are implicitly represented by adjacency matrices and standard
adjacency lists. For example:

• Intersection graphs are usually represented as a list of the underlying geometric
objects. As long as we can test whether two objects intersect in constant time, we
can apply any graph algorithm to an intersection graph by pretending that it is stored
explicitly as an adjacency matrix.

• Any data structure composed from records with pointers between them can be seen
as a directed graph; graph algorithms can be applied to these data structures by
pretending that the graph is stored in a standard adjacency list.

10Don’t worry if you don’t understand the phrase “amortized expected”.

11

5. BASIC GRAPH ALGORITHMS

• Similarly, we can apply any graph algorithm to a configuration graph as though it
were given to us as a standard adjacency list, provided we can enumerate all possible
moves from a given configuration in constant time each.

For the last two examples, we can enumerate the edges leaving any vertex in time
proportional to its degree, but we cannot necessarily determine in constant time if two
vertices are adjacent. (Is there a pointer from this record to that record? Can we get
from this configuration to that configuration in one move?) Thus, a standard adjacency
list, with neighbors stored in linked lists, is the appropriate model data structure.

By default, all time bounds for graph algorithms assume that the graph is rep-
resented by a standard adjacency list.

5.5 Whatever-First Search

So far we have only discussed local operations on graphs; arguably the most fundamental
global question we can ask about graphs is reachability. Given a graph G and a vertex s
in G, the reachability question asks which vertices are reachable from s; that is, for which
vertices w is there a path from v to w? For now, let’s consider only undirected graphs; I’ll
consider directed graphs briefly at the end of this section. For undirected graphs, the
vertices reachable from s are precisely the vertices in the same component as s.

Perhaps the most natural reachability algorithm, at least for people like me who are
used to thinking recursively, is depth-first search. This algorithm can be written either
recursively or iteratively. It’s exactly the same algorithm either way; the only difference
is that we can actually see the “recursion” stack in the non-recursive version.

RecursiveDFS(v):
if v is unmarked

mark v
for each edge vw

RecursiveDFS(w)

IterativeDFS(s):
Push(s)
while the stack is not empty

v← Pop
if v is unmarked

mark v
for each edge vw

Push(w)

Depth-first search is just one (perhaps the most common) species of a general family
of graph traversal algorithms that I call whatever-first search. The generic traversal
algorithm stores a set of candidate edges in some data structure that I’ll call a “bag”. The
only important properties of a “bag” are that we can put stuff into it and then later take
stuff back out. A stack is a particular type of bag, but certainly not the only one. Here is
the generic algorithm:

12

5.5. Whatever-First Search

WhateverFirstSearch(s):
put s into the bag
while the bag is not empty

take v from the bag
if v is unmarked

mark v
for each edge vw

put w into the bag

I claim that WhateverFirstSearch marks every node reachable from s and nothing
else. The algorithm clearly marks each vertex in G at most once. To show that it visits
every node in a connected graph at least once, we modify the algorithm slightly; the
modifications are highlighted in red. Instead of keeping vertices in the bag, the modified
algorithm stores pairs of vertices. This modification allows us to remember, whenever
we visit a vertex v for the first time, which previously-visited neighbor vertex put v into
the bag. We call this earlier vertex the parent of v.

WhateverFirstSearch(s):
put (∅, s) in bag
while the bag is not empty

take (p, v) from the bag (?)
if v is unmarked

mark v
parent(v)← p
for each edge vw (†)

put (v, w) into the bag (??)

Lemma 1. WhateverFirstSearch(s) marks every vertex reachable from s and only those
vertices. Moreover, the set of pairs (v,parent(v)) with parent(v) 6= ∅ defines a spanning
tree of the component containing s.

Proof: First we argue that the algorithm marks every vertex v that is reachable from s,
by induction on the shortest-path distance from s to v. The algorithm marks s. Let v be
any other vertex reachable from s, and let s� · · ·�u�v be any path from s to v with the
minimum number of edges. There must be such a path, because v is reachable from s.
The prefix path s� · · ·�u is shorter than the shortest path from s to u, so the inductive
hypothesis implies that the algorithm marks u. When the algorithm marks u, it must put
immediately (u, v) into the bag, so it must later take (u, v) out of the bag, at which point
the algorithm immediately marks v, unless it was already marked.

Every pair (v,parent(v)) with parent(v) 6= ∅ is actually an edge in the under-
lying graph G. We claim that for any marked vertex v, the path of parent edges
v�parent(v)�parent(parent(v))� · · · eventually leads back to s; we prove this claim by
induction on the order in which vertices are marked. Trivially s is reachable from s, so
let v be any other marked vertex. The parent of v must be marked before v is marked, so

13

5. BASIC GRAPH ALGORITHMS

the inductive hypothesis implies that the parent path parent(v)�parent(parent(v))� · · ·
leads to s; adding one more parent edge s�parent(s) establishes the claim.

The previous claim implies that every vertex marked by the algorithm is reachable
from s, and that the set of all parent edges forms a connected graph. Because every
marked node except s has a unique parent, the number of parent edges is exactly one
less than the number of marked vertices. Thus, the parent edges form a tree. �

Analysis

The running time of the traversal algorithm depends on what data structure we use for
the “bag”, but we can make a few general observations. Let T is the time required to
insert a single item into the bag or delete a single item from the bag. The for loop (†)
is executed exactly once for each marked vertex, and therefore at most V times. Each
edge uv in the component of s is put into the bag exactly twice; once as the pair (u, v)
and once as the pair (v, u), so line (??) is executed at most 2E times. Finally, we can’t
take more things out of the bag than we put in, so line (?) is executed at most 2E + 1
times. Thus, assuming the underlying graph G is stored in a standard adjacency list,
WhateverFirstSearch runs in O(V + ET) time. (If G is stored in an adjacency matrix,
the running time of WhateverFirstSearch increases to O(V 2 + ET).)

5.6 Important Variants

Stack: Depth-First

If we implement the “bag” using a stack, we recover our original depth-first search
algorithm. Stacks support insertions (push) and deletions (pop) in O(1) time each, so
the algorithm runs in O(V + E) time. The spanning tree formed by the parent edges
is called a depth-first spanning tree. The exact shape of the tree depends on the start
vertex and on the order that neighbors are visited inside the for loop (†), but in general,
depth-first spanning trees are long and skinny.

Queue: Breadth-First

If we implement the “bag” using a queue, we get a different graph-traversal algorithm
called breadth-first search. Stacks support insertions (push) and deletions (pop) in
O(1) time each, so the algorithm runs in O(V + E) time. In this case, the breadth-first
spanning tree formed by the parent edges contains shortest paths from the start vertex s
to every other vertex in its connected component; we’ll discuss shortest paths in more
detail in a later chapter. Again, exact shape of a breadth-first spanning tree depends on
the start vertex and on the order that neighbors are visited in the for loop (†), but in
general, breadth-first spanning trees are short and bushy.

14

5.6. Important Variants

Figure 5.11. A depth-first spanning tree and a breadth-first spanning tree of the same graph, both starting at thecenter vertex.

Priority Queue: Best-First

Finally, if we implement the “bag” using a priority queue, we get yet another family of
algorithms called best-first search. Because the priority queue stores at most one copy of
each edge, inserting an edge or extracting the minimum-priority edge requires O(log E)
time, which implies that best-first search runs in O(V + E log E) time.

I describe best-first search as a “family of algorithms”, rather than a single algorithm,
because there are different methods to assign priorities to the edges, and these choices
lead to different behavior by the algorithm. I’ll describe three well-known variants below,
but there are many others. In all three examples, we assume that every edge uv in the
input graph has a weight w(uv).

For example, if we use the weight of each edge as its priority, best-first search
constructs the minimum spanning tree of the component of s. Surprisingly, as long as
all the edge weights are distinct, the resulting tree does not depend on the start vertex or
the order that neighbors are visited; in this case, the minimum spanning tree is actually
unique. This instantiation of best-first search is commonly known as Prim’s algorithm;
we’ll discuss this and other minimum-spanning-trees in more detail in a later chapter.

We can also compute shortest paths in weighted graphs using best-first search, as
follows. Every marked vertex v stores a distance dist(v). Initially we set dist(s) = 0. For
every other vertex v, when we set parent(v)← p, we also set dist(v)← dist(p) +w(pv),
and when we insert (v, w) into the priority queue, we use the priority dist(v) +w(vw).
Assuming all edge weights are positive, dist(v) is the length of the shortest path from s
to v. This instantiation of best-first search is commonly known as Dijkstra’s algorithm;
we’ll discuss this and other shortest-path algorithms in more detail in a later chapter.

Finally, define the width of a path to be the minimum weight of any edge in the path.
A simple modification of Dijkstra’s best-first search algorithm computes widest paths
from s to every other reachable vertex. Every marked vertex v stores a value width(v).
Initially we set width(s) =∞. For every other vertex v, when we set parent(v)← p, we
also set width(v)←min{width(p), w(pv)}, and when we insert the edge (v, w) into the
priority queue, we use the priority min{width(v), w(vw)}.

15

5. BASIC GRAPH ALGORITHMS

Disconnected Graphs

WhateverFirstSearch(s) only visits the vertices reachable from s. To visit every vertex
in G, we can use the following simple “wrapper” function.

WFSAll(G):
for all vertices v

unmark v
for all vertices v

if v is unmarked
WhateverFirstSearch(v)

Wait, I hear you ask, why are we doing something so complicated? Why can’t we just
scan the vertex array?

MarkEveryVertexDuh(G):
for all vertices v

mark v

Well, sure, but then the order that we’re visiting the vertices is determined by the data
structure rather than the connectivity structure of the graph. Unlike a naive scan through
the vertices, WFSAll visits all the vertices in one component, and then all the vertices in
the next component, and so on through each component of the input graph.

This component-by-component scan allows us, for example, to count the components
of a disconnected graph using a single counter.

CountComponents(G):
count← 0
for all vertices v

unmark v
for all vertices v

if v is unmarked
count← count+ 1
WhateverFirstSearch(v)

return count

With just a bit more work, we can record which component contains each vertex, instead
of merely marking it.

CountAndLabel(G):
count← 0
for all vertices v

unmark v
for all vertices v

if v is unmarked
count← count+ 1
LabelOne(v, count)

return count

〈〈Label one component〉〉
LabelOne(v, count):
while the bag is not empty

take v from the bag
if v is unmarked

mark v
comp(v)← count
for each edge vw

put w into the bag

16

5.6. Important Variants

WFSAll labels every vertex once, puts every edge into the bag once, and takes every
edge out of the bag once, so the overall running time is O(V + ET), where T is the time
for a bag operation. In particular, if we run depth-first search or breadth-first search at
every vertex, the resulting algorithm still requires only O(V + E) time.

Moreover, because WhateverFirstSearch computes a spanning tree of one compo-
nent, we can use WFSAll to computes a spanning forest of the entire graph. In particular,
best-first search with edge weights as priorities computes the minimum-weight spanning
forest in O(V + E log E).

Surprisingly, at least one extremely popular algorithms textbook claims that this
wrapper can only be used with depth-first search.¹¹ They’re wrong.

Directed Graphs

Whatever-first search can be adapted trivially to directed graphs; the only change is that
when we mark a vertex, we put all of its out-neighbors into the bag. In fact, if we are
using standard adjacency lists or adjacency matrices, we do not have to change the code
at all!

WhateverFirstSearch(s):
put s into the bag
while the bag is not empty

take v from the bag
if v is unmarked

mark v
for each edge v�w

put w into the bag

Our earlier proof implies that the algorithm marks every vertex reachable from s,
and the directed edges parent(v)�p define a rooted tree, with all edges directed away
from the root s. However, even if the graph is connected, we no longer necessarily obtain
a spanning tree of the graph, because reachability is no longer symmetric.

On the gripping hand, WhateverFirstSearch does define a spanning tree of the
vertices reachable from s. Moreover, by varying the instantiation of the “bag”, we can
obtain a depth-first spanning tree, a breadth-first spanning tree, a minimum-weight
directed spanning tree, a shortest-path tree, or a widest-path tree of those reachable
vertices. Moreoverover, if we use the wrapper function WFSAll, the resulting parent
pointers do define a spanning tree for each (weakly) connected component of any
directed graph.

11To quote directly: “Unlike breadth-first search, whose predecessor subgraph forms a tree, the
predecessor subgraph produced by a depth-first search may be composed of several trees, because the
search may repeat from multiple sources.”

17

5. BASIC GRAPH ALGORITHMS

5.7 Graph Reductions: Flood Fill

One of the earliest modern examples of whatever-first search, dating back at least
to Edward Moore in the mid-1950s, is the flood fill problem. A pixel map is a two-
dimensional array whose value represent colors; the individual entries in the array are
called pixels, an abbreviation of picture elements.¹² A connected region in a pixel map is a
connected subset of pixels all with the same color, where two pixels are connected if
they are immediate horizontal or vertical neighbors. The flood fill operation, commonly
represented with a paint can in raster-graphics editing software, changes every pixel in
a connected region to a new color; the input to the operation consists of the indices i
and j of one pixel in the target region and the new color.

Figure 5.12. An example of flood fill
The flood-fill problem can be reduced to the reachability problem by chasing the

definitions. We define an undirected graph G = (V, E), whose vertices are the individual
pixels, and whose edges connect neighboring pixels with the same color. Each connected
region in the pixel map is a component of G; thus, the flood-fill problem reduces to a
reachability problem in G. We can solve this reachability problem using whatever-first
search in G, starting at the given pixel (i, j), with one minor modification: whenever we
mark a vertex, we immediately change its color.

In an actual implementation, we would not actually build a separate graph data
structure for G; rather, because we can list the same-color neighbors of any pixel in O(1)
time each, we would use the pixel map itself as a representation of the graph as though
it were a standard adjacency list. For an n× n pixel map, the graph G has n2 vertices
and at most 2n2 edges, so whatever-first search runs in O(V + E) = O(n2) time. More
careful analysis implies that the running time is proportional to the number of pixels in
the region being filled, which could be considerably smaller than O(n2).

This simple example demonstrates the essential ingredients of a reduction. Rather
than solving the flood-fill problem from scratch, we use an existing algorithm as a
black-box. How whatever-first search works is utterly unimportant here; all that matters
is its specification: Given a graph G and a starting vertex s, mark every vertex that is
reachable from s. Like any other subroutine, we still have to describe how to construct

12Before the advent of modern raster display devices in the 1960s, pixels were more commonly known as
stitches or tesserae, depending on whether they were made of thread or stones.

18

Exercises

the input and how to use its output. We also have to analyze our resulting algorithm
in terms of our input parameters, not the vertices and edges of whatever intermediate
graph our algorithm constructs.

Exercises

Sequences/Arrays

1. Prove that the following definitions are all equivalent.

• A tree is a connected acyclic graph.
• A tree is one component of a forest. (A forest is an acyclic graph.)
• A tree is a connected graph with at most V − 1 edges.
• A tree is a minimally connected graph; removing any edge makes the graph

disconnected.
• A tree is an acyclic graph with at least V − 1 edges.
• A tree is a maximally acyclic graph; adding an edge between any two vertices

creates a cycle.

2. Prove that any connected acyclic graph with n≥ 2 vertices has at least two vertices
with degree 1. Do not use the words “tree” or “leaf”, or any well-known properties
of trees; your proof should follow entirely from the definitions of “connected” and
“acyclic”.

3. Let G be a connected graph, and let T be a depth-first spanning tree of G rooted at
some node v. Prove that if T is also a breadth-first spanning tree of G rooted at v,
then G = T .

4. A graph (V, E) is bipartite if the vertices V can be partitioned into two subsets L
and R, such that every edge has one vertex in L and the other in R.

(a) Prove that every tree is a bipartite graph.

(b) Describe and analyze an efficient algorithm that determines whether a given
undirected graph is bipartite.

5. Whenever groups of pigeons gather, they instinctively establish a pecking order. For
any pair of pigeons, one pigeon always pecks the other, driving it away from food or
potential mates. The same pair of pigeons always chooses the same pecking order,
even after years of separation, no matter what other pigeons are around. Surprisingly,
the overall pecking order can contain cycles—for example, pigeon A pecks pigeon B,
which pecks pigeon C , which pecks pigeon A.

(a) Prove that any finite set of pigeons can be arranged in a row from left to right so
that every pigeon pecks the pigeon immediately to its left. Pretty please.

19

5. BASIC GRAPH ALGORITHMS

(b) Suppose you are given a directed graph representing the pecking relationships
among a set of n pigeons. The graph contains one vertex per pigeon, and it
contains an edge i� j if and only if pigeon i pecks pigeon j. Describe and analyze
an algorithm to compute a pecking order for the pigeons, as guaranteed by part
(a).

6. An Euler tour of a graph G is a closed walk through G that traverses every edge of G
exactly once.

(a) Prove that a connected graph G has an Euler tour if and only if every vertex has
even degree.

(b) Describe and analyze an algorithm to compute an Euler tour in a given graph, or
correctly report that no such graph exists.

7. The d-dimensional hypercube is the graph defined as follows. There are 2d vertices,
each labeled with a different string of d bits. Two vertices are joined by an edge if
their labels differ in exactly one bit.

(a) A Hamiltonian cycle in a graph G is a cycle of edges in G that visits every vertex
of G exactly once. Prove that for all d ≥ 2, the d-dimensional hypercube has a
Hamiltonian cycle.

(b) Which hypercubes have an Euler tour (a closed walk that traverses every edge
exactly once)? [Hint: This is very easy.]

8. Recall that a directed graph G is strongly connected if, for any two vertices u and v,
there is a path in G from u to v and a path in G from v to u.

Describe an algorithm to determine, given an undirected graph G as input,
whether it is possible to direct each edge of G so that the resulting directed graph is
strongly connected.

9. Snakes and Ladders is a classic board game, originating in India no later than the
16th century. The board consists of an n× n grid of squares, numbered consecutively
from 1 to n2, starting in the bottom left corner and proceeding row by row from
bottom to top, with rows alternating to the left and right. Certain pairs of squares in
this grid, always in different rows, are connected by either “snakes” (leading down)
or “ladders” (leading up). Each square can be an endpoint of at most one snake or
ladder.

You start with a token in cell 1, in the bottom left corner. In each move, you
advance your token up to k positions, for some fixed constant k. If the token ends the
move at the top end of a snake, it slides down to the bottom of that snake. Similarly,
if the token ends the move at the bottom end of a ladder, it climbs up to the top of
that ladder.

20

Exercises

Describe and analyze an algorithm to compute the smallest number of moves
required for the token to reach the last square of the grid.

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

A typical Snakes and Ladders board.Upward straight arrows are ladders; downward wavy arrows are snakes.
10. A number maze is an n× n grid of positive integers. A token starts in the upper left

corner; your goal is to move the token to the lower-right corner. On each turn, you
are allowed to move the token up, down, left, or right; the distance you may move
the token is determined by the number on its current square. For example, if the
token is on a square labeled 3, then you may move the token three steps up, three
steps down, three steps left, or three steps right. However, you are never allowed to
move the token off the edge of the board.

Describe and analyze an efficient algorithm that either returns the minimum
number of moves required to solve a given number maze, or correctly reports that
the maze has no solution.

3 5
5 3

7 4
1 5

2 8
4 5

3 1
7 2

6
3
4
3

3 1 3 2 ★

3 5
5 3

7 4
1 5

2 8
4 5

3 1
7 2

6
3
4
3

3 1 3 2 ★

A 5× 5 number maze that can be solved in eight moves.
11. The infamous Mongolian puzzle-warrior Vidrach Itky Leda invented the following

puzzle in the year 1473. The puzzle consists of an n× n grid of squares, where each
square is labeled with a positive integer, and two tokens, one red and the other blue.
The tokens always lie on distinct squares of the grid. The tokens start in the top left
and bottom right corners of the grid; the goal of the puzzle is to swap the tokens.

In a single turn, you may move either token up, right, down, or left by a distance
determined by the other token. For example, if the red token is on a square labeled 3,

21

5. BASIC GRAPH ALGORITHMS

then you may move the blue token 3 steps up, 3 steps left, 3 steps right, or 3 steps
down. However, you may not move either token off the grid, and at the end of a
move the two tokens cannot lie on the same square.

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

1 2 4 3

3 4 1 2

3 1 2 3

2 3 1 2

A five-move solution for a 4× 4 Vidrach Itky Leda puzzle.
Describe and analyze an efficient algorithm that either returns the minimum

number of moves required to solve a given Vidrach Itky Leda puzzle, or correctly
reports that the puzzle has no solution. For example, given the puzzle above, your
algorithm would return the number 5.

12. The following puzzles appear in my younger daughter’s math workbook.¹³

www.BeastAcademy.comAngle Mazes

7.

8.

9.

FinishStart

FinishStart

Start

Finish

PRACTICE Complete each angle maze below by tracing a path
from start to fi nish that has only acute angles.

Practice 3A: Chapter 1, pages 8-9

www.BeastAcademy.comAngle Mazes

7.

8.

9.

FinishStart

FinishStart

Start

Finish

PRACTICE Complete each angle maze below by tracing a path
from start to fi nish that has only acute angles.

Practice 3A: Chapter 1, pages 8-9

www.BeastAcademy.comAngle Mazes

7.

8.

9.

FinishStart

FinishStart

Start

Finish

PRACTICE Complete each angle maze below by tracing a path
from start to fi nish that has only acute angles.

Practice 3A: Chapter 1, pages 8-9

Describe and analyze an algorithm to solve arbitrary acute-angle mazes.

You are given a connected undirected graph G, whose vertices are points in the
plane and whose edges are line segments. Edges do not intersect, except at their
endpoints. For example, a drawing of the letter X would have five vertices and four
edges; the first maze above has 13 vertices and 15 edges. You are also given two
vertices Start and Finish.

Your algorithm should return True if G contains a walk from Start to Finish
that has only acute angles, and False otherwise. Formally, a walk through G is
valid if, for any two consecutive edges u�v�w in the walk, either ∠uvw = 180◦

or 0 < ∠uvw < 90◦. Assume you have a subroutine that can compute the angle
between any two segments in O(1) time. Do not assume that angles are integer
multiples of 1◦.

13. The famous puzzle-maker Kaniel the Dane invented a solitaire game played with two
tokens on an n× n square grid. Some squares of the grid are marked as obstacles,
and one grid square is marked as the target. In each turn, the player must move one
of the tokens from is current position as far as possible upward, downward, right, or

13Jason Batterson and Shannon Rogers, Beast Academy Math: Practice 3A, 2012. See https://www.
beastacademy.com/resources/printables.php for more examples.

22

https://www.beastacademy.com/resources/printables.php
https://www.beastacademy.com/resources/printables.php

Exercises

left, stopping just before the token hits (1) the edge of the board, (2) an obstacle
square, or (3) the other token. The goal is to move either of the tokens onto the
target square.

For example, we can solve the puzzle below by moving the red token down until
it hits the obstacle, then moving the green token left until it hits the red token, and
then moving the red token left, down, right, and up. The red token stops at the
target on the 6th move because the green token is just above the target square.

1
2

3

4
5

6

An instance of the Kaniel the Dane’s puzzle that can be solved in six moves.Circles indicate the initial token positions; black squares are obstacles; the center square is the target.
Describe and analyze an algorithm to determine whether an instance of this

puzzle is solvable. Your input consist of the integer n, a list of obstacle locations, the
target location, and the initial locations of the tokens. The output of your algorithm
is a single boolean: True if the given puzzle is solvable and False otherwise. The
running time of your algorithm should be a small polynomial in n.

14. Every cheesy romance has a scene where the romantic couple, after a long and
frustrating separation, suddenly see each other across a long distance, and then
slowly approach one another with unwavering eye contact as the music rolls in and
the rain lifts and the sun shines through the clouds and rainbows and kittens and
chocolate unicorns and. . . .

Suppose a romantic couple—in grand computer science tradition, named Alice
and Bob—enters their favorite park at the southeast and southwest corners and
immediately establish eye-contact. They can’t just run directly to each other; instead,
they must stay on the path that zig-zags through the part between the southeast and
southwest entrances. To maintain the proper dramatic tension, Alice and Bob must
traverse the path so that they lie on a direct east-west line.

We can describe the zigzag path as two arrays X [0 .. n] and Y [0 .. n], which list
the x- and y-coordinates of the corners of the path in order from the southwest
endpoint to the southeast endpoint. Clearly Y [0] = Y [n].

(a) Suppose Y [0] = Y [n] = 0 and Y [i] > 0 for every other index i; that is, the
endpoints of the path are strictly below every other point on the path. Prove
that for any path P meeting these conditions, Alice and Bob can always meet.
[Hint: Describe a graph that models all possible locations of the couple along the
path. What are the vertices of this graph? What are the edges? What can we say
about the degrees of the vertices?]

23

5. BASIC GRAPH ALGORITHMS

Alice and Bob meet.
(b) If the endpoints of the path are not below every other vertex, Alice and Bob

might still be able to meet, or they might not. Describe an algorithm to decide
whether Alice and Bob can meet, without either breaking east-west eye contact
or stepping off the path, given the arrays X [0 .. n] and Y [0 .. n] as input.

15. A rolling die maze is a puzzle involving a standard six-sided die (a cube with numbers
on each side) and a grid of squares. You should imagine the grid lying on top of a
table; the die always rests on and exactly covers one square. In a single step, you
can roll the die 90 degrees around one of its bottom edges, moving it to an adjacent
square one step north, south, east, or west.

Rolling a die.
Some squares in the grid may be blocked; the die can never rest on a blocked

square. Other squares may be labeled with a number; whenever the die rests on a
labeled square, the number of pips on the top face of the die must equal the label.
Squares that are neither labeled nor marked are free. You may not roll the die off
the edges of the grid. A rolling die maze is solvable if it is possible to place a die on
the lower left square and roll it to the upper right square under these constraints.

For example, here are two rolling die mazes. Black squares are blocked. The
maze on the left can be solved by placing the die on the lower left square with 1 pip
on the top face, and then rolling it north, then north, then east, then east. The maze
on the right is not solvable.

1

1

1

1

24

Exercises

Two rolling die mazes. Only the maze on the left is solvable.
(a) Suppose the input is a two-dimensional array L[1 .. n][1 .. n], where each entry

L[i][j] stores the label of the square in the ith row and jth column, where 0
means the square is free and −1 means the square is blocked. Describe and
analyze a polynomial-time algorithm to determine whether the given rolling die
maze is solvable.

(b) Now suppose the maze is specified implicitly by a list of labeled and blocked
squares. Specifically, suppose the input consists of an integer M , specifying the
height and width of the maze, and an array S[1 .. n], where each entry S[i]
is a triple (x , y, L) indicating that square (x , y) has label L. As in the explicit
encoding, label −1 indicates that the square is blocked; free squares are not listed
in S at all. Describe and analyze an efficient algorithm to determine whether
the given rolling die maze is solvable. For full credit, the running time of your
algorithm should be polynomial in the input size n.

[Hint: You have some freedom in how to place the initial die. There are rolling die
mazes that can only be solved if the initial position is chosen correctly.]

16. Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-
pencil racing game that Jeff played on the bus in 5th grade.¹⁴ The game is played
with a track drawn on a sheet of graph paper. The players alternately choose a
sequence of grid points that represent the motion of a car around the track, subject
to certain constraints explained below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A
subset of grid squares is marked as the starting area, and another subset is marked as
the finishing area. The initial position of each car is chosen by the player somewhere
in the starting area; the initial velocity of each car is always (0, 0). At each step, the
player optionally increments or decrements either or both coordinates of the car’s
velocity; in other words, each component of the velocity can change by at most 1 in a
single step. The car’s new position is then determined by adding the new velocity to
the car’s previous position. The new position must be inside the track; otherwise, the
car crashes and that player loses the race. The race ends when the first car reaches a
position inside the finishing area.

Suppose the racetrack is represented by an n× n array of bits, where each 0 bit
represents a grid point inside the track, each 1 bit represents a grid point outside
the track, the “starting area” is the first column, and the “finishing area” is the last
column.

Describe and analyze an algorithm to find the minimum number of steps required
to move a car from the starting line to the finish line of a given racetrack. [Hint:
Build a graph. What are the vertices? What are the edges? What problem is this?]

14The actual game is a bit more complicated than the version described here. See http://harmmade.
com/vectorracer/ for an excellent online version.

25

http://harmmade.com/vectorracer/
http://harmmade.com/vectorracer/

5. BASIC GRAPH ALGORITHMS

velocity position
(0,0) (1,5)
(1,0) (2,5)
(2,−1) (4,4)
(3,0) (7,4)
(2,1) (9,5)
(1,2) (10, 7)
(0,3) (10, 10)
(−1,4) (9,14)
(0,3) (9,17)
(1,2) (10, 19)
(2,2) (12, 21)
(2,1) (14, 22)
(2,0) (16, 22)
(1,−1) (17, 21)
(2,−1) (19, 20)
(3,0) (22, 20)
(3,1) (25, 21)

ST
A
RT

FIN
ISH

Figure 5.13. A 16-step Racetrack run, on a 25× 25 track. This is not the shortest run on this track.

17. Draughts, also known in the US as “checkers”, is a game played on an m×m grid of
squares, alternately colored light and dark. The game is usually played on an 8× 8
or 10× 10 board, but the rules easily generalize to any board size. Each dark square
is occupied by at most one game piece (usually called a checker in the U.S.), which is
either black or white; light squares are always empty. One player (“White”) moves
the white pieces; the other (“Black”) moves the black pieces. A player loses when
her last piece is taken off the board.

Consider the following simple version of the game, essentially American checkers
or British draughts, but where every piece is a king.¹⁵ Pieces can be moved in any of
the four diagonal directions. On each turn, a player either moves one of her pieces
one step diagonally into an empty square, or makes a series of jumps with one of
her pieces. In each jump, the piece moves to an empty square two steps away in
any diagonal direction, but only if the intermediate square is occupied by a piece of
the opposite color; this enemy piece is captured and immediately removed from the
board. All jumps in the same turn must be made with the same piece.

Describe an algorithm to decide whether White can capture every black piece,
thereby winning the game, in a single turn. The input consists of the width of the
board (m), a list of positions of white pieces, and a list of positions of black pieces.
For full credit, your algorithm should run in O(n) time, where n is the total number of
pieces. [Hint: The greedy strategy—make arbitrary jumps until you get stuck—does
not always find a winning sequence of jumps even when one exists. See problem 6.
Parity, parity, parity.]

15Most other variants of draughts have “flying kings”, which behave very differently than what’s described
here, and which make this problem much more difficult.

26

Exercises

1

5

6

4

8

7

9

2

3

10

11

White wins in one turn.

White cannot win in one turn from either of these positions.

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

27

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

	Basic Graph Algorithms
	Introduction and History
	Vocabulistics
	Abstract Representations and Examples
	Data Structures
	Whatever-First Search
	Important Variants
	Graph Reductions: Flood Fill

