
CS/ECE 374 Sec A Lab 6 Spring 2023

Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your
task is to design algorithms for these problems that are significantly faster using binary search
related ideas.

1. Suppose we are given an array A[1 .. n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order so that A[1] < A[2] < · · · < A[n].

(a) Describe a fast algorithm that either computes an index i such that A[i] = i or
correctly reports that no such index exists.

(b) Suppose we know in advance that A[1] > 0. Describe an even faster algorithm that
either computes an index i such that A[i] = i or correctly reports that no such index
exists. [Hint: This is really easy.]

2. Suppose we are given an array A[1 .. n] such that A[1] ≥ A[2] and A[n− 1] ≤ A[n]. We
say that an element A[x] is a local minimum if both A[x− 1] ≥ A[x] and A[x] ≤ A[x+1].
For example, there are exactly six local minima in the following array:

9
N
7 7 2

N
1 3 7 5

N
4 7

N
3

N
3 4 8

N
6 9

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer 9, because A[9] is
a local minimum. [Hint: With the given boundary conditions, any array must contain at
least one local minimum. Why?]

3. Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct integers.
Describe a fast algorithm to find the median (meaning the nth smallest element) of the
union A ∪B. For example, given the input

A[1 .. 8] = [0, 1, 6, 9, 12, 13, 18, 20] B[1 .. 8] = [2, 4, 5, 8, 17, 19, 21, 23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one
element of A with one element of B?]

4. Suppose you have an algorithm that given as input a directed graph G = (V,E), nodes
s, t ∈ V , and an integer k, outputs whether there is path from s to t in G with at most
k edges. Thus the algorithm is solving a decision problem. Now you want to use this
decision algorithm as a black box to find the length of the shortest path from s to t, which
is an optimization problem. How do you reduce the optimization problem to the decision
problem? What is an upper bound on the number of calls to the decision problem that
your optimization algorithm makes? Assume n is the number of nodes in G. Now suppose
the graphs has non-negative integer edge lengths with U being the largest edge length and
L ≥ 1 being the smallest edge length. Now how many calls will your algorithm take? Is it
polynomial in the input length?

To think about later:

1



CS/ECE 374 Sec A Lab 6 Spring 2023

5. Now suppose you are given two sorted arrays A[1 ..m] and B[1 .. n] and an integer k.
Describe a fast algorithm to find the kth smallest element in the union A∪B. For example,
given the input

A[1 .. 8] = [0, 1, 6, 9, 12, 13, 18, 20] B[1 .. 5] = [2, 5, 7, 17, 19] k = 6

your algorithm should return the integer 7.

6. Suppose you have an algorithm that given as input a directed graph G = (V,E), nodes
s, t ∈ V , and an integer k, outputs whether the number of distinct shortest paths from s to
t is at least k. Describe an algorithm that counts the number of distinct shortest s-t paths
in G. Does your algorithm run in polynomial time?

2


