Let L be an arbitrary regular language over the alphabet $\Sigma = \{0, 1\}$. Prove that the following languages are also regular. (You probably won't get to all of these.)

1. FLIPODDS(L) := { $flipOdds(w) \mid w \in L$ }, where the function flipOdds inverts every odd-indexed bit in w. For example:

```
flipOdds(0000111101010101) = 10100101111111111
```

2. UNFLIPODD1s(L) := { $w \in \Sigma^* | flipOdd1s(w) \in L$ }, where the function flipOdd1 inverts every other 1 bit of its input string, starting with the first 1. For example:

$$flipOdd1s(0000111101010101) = 0000010100010001$$

- 3. FLIPODD1s(L) := { $flipOdd1s(w) \mid w \in L$ }, where the function flipOdd1 is defined as in the previous problem.
- 4. Prove that the language $insert1(L) := \{x1y \mid xy \in L\}$ is regular. Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by inserting exactly one 1. For example, if $L = \{\varepsilon, 00K!\}$, then $insert1(L) = \{1, 100K!, 010K!, 000K!, 000K!\}$.

Work on these later:

- 5. Prove that the language $delete1(L) := \{xy \mid x1y \in L\}$ is regular. Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L by deleting exactly one 1. For example, if $L = \{101101, 00, \varepsilon\}$, then $delete1(L) = \{01101, 10101, 10110\}$.
- 6. Consider the following recursively defined function on strings:

$$stutter(w) := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ aa \cdot stutter(x) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases}$$

Intuitively, stutter(w) doubles every symbol in w. For example:

- *stutter*(PREST0) = PPRREESSTT00
- (a) Prove that the language $stutter^{-1}(L) := \{w \mid stutter(w) \in L\}$ is regular.
- (b) Prove that the language $stutter(L) := \{stutter(w) \mid w \in L\}$ is regular.
- 7. Consider the following recursively defined function on strings:

$$evens(w) := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ \varepsilon & \text{if } w = a \text{ for some symbol } a \\ b \cdot evens(x) & \text{if } w = abx \text{ for some symbols } a \text{ and } b \text{ and some string } x \end{cases}$$

Intuitively, evens(w) skips over every other symbol in w. For example:

- evens(EXPELLIARMUS) = XELAMS
- evens(AVADA > KEDAVRA) = VD > EAR.
- (a) Prove that the language evens⁻¹(L) := { $w \mid evens(w) \in L$ } is regular.
- (b) Prove that the language $evens(L) := \{evens(w) \mid w \in L\}$ is regular.

You may find it helpful to imagine these transformations concretely on the following DFA for the language specified by the regular expression 00*11*.

