Let L be an arbitrary regular language over the alphabet $\Sigma=\{0,1\}$. Prove that the following languages are also regular. (You probably won't get to all of these.)

1. FlipOdds $(L):=\{f l i p O d d s(w) \mid w \in L\}$, where the function flipOdds inverts every odd-indexed bit in w. For example:

$$
\text { flipOdds }(0000111101010101)=1010010111111111
$$

2. UnflipOdd1s $(L):=\left\{w \in \Sigma^{*} \mid\right.$ flipOdd1s $\left.(w) \in L\right\}$, where the function flipOdd1 inverts every other 1 bit of its input string, starting with the first 1 . For example:
flipOdd1s(00001111101010101)=000001010100010001
3. FLipOdd1s(L) $:=\{f l i p O d d 1 s(w) \mid w \in L\}$, where the function flipOdd1 is defined as in the previous problem.
4. Prove that the language insert $1(L):=\{x 1 y \mid x y \in L\}$ is regular.

Intuitively, insert1 (L) is the set of all strings that can be obtained from strings in L by inserting exactly one 1 . For example, if $L=\{\varepsilon, 00 \mathrm{~K}!\}$, then $\operatorname{insert1}(L)=\{1,100 \mathrm{~K}!, 010 \mathrm{~K}!, 001 \mathrm{~K}$!, 00K1!,00K!1\}.

Work on these later:

5. Prove that the language delete $1(L):=\{x y \mid x 1 y \in L\}$ is regular.

Intuitively, delete1 (L) is the set of all strings that can be obtained from strings in L by deleting exactly one 1 . For example, if $L=\{101101,00, \varepsilon\}$, then delete $1(L)=\{01101,10101,10110\}$.
6. Consider the following recursively defined function on strings:

$$
\operatorname{stutter}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ a a \cdot \operatorname{stutter}(x) & \text { if } w=a x \text { for some symbol } a \text { and some string } x\end{cases}
$$

Intuitively, $\operatorname{stutter}(w)$ doubles every symbol in w. For example:

- $\operatorname{stutter}($ PRESTO $)=$ PPRREESSTTOO
- stutter(HOCUS \diamond POCUS $)=$ HHOOCCUUSS $\diamond \diamond$ PPOOCCUUSS
(a) Prove that the language $\operatorname{stutter}^{-1}(L):=\{w \mid \operatorname{stutter}(w) \in L\}$ is regular.
(b) Prove that the language $\operatorname{stutter}(L):=\{\operatorname{stutter}(w) \mid w \in L\}$ is regular.

7. Consider the following recursively defined function on strings:

$$
\operatorname{evens}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ \varepsilon & \text { if } w=a \text { for some symbol } a \\ b \cdot \operatorname{evens}(x) & \text { if } w=a b x \text { for some symbols } a \text { and } b \text { and some string } x\end{cases}
$$

Intuitively, evens(w) skips over every other symbol in w. For example:

- evens(EXPELLIARMUS) $=$ XELAMS
- $\operatorname{evens(AVADA\triangleleft KEDAVRA)}=$ VD»EAR.
(a) Prove that the language evens $^{-1}(L):=\{w \mid \operatorname{evens}(w) \in L\}$ is regular.
(b) Prove that the language $\operatorname{evens}(L):=\{\operatorname{evens}(w) \mid w \in L\}$ is regular.

You may find it helpful to imagine these transformations concretely on the following DFA for the language specified by the regular expression $00^{*} 11^{*}$.

