
CS/ECE 374 Sec A= Spring 2023
9 Homework 7 :

Due Wednesday, March 22, 2023 at 10am

1. A sequence A = a1, a2, . . . , an is a supersequence of a sequence B = b1, b2, . . . , bm if
and only if B is a subsequence of A. More formally, A is a supersequence of B if there
exist indices 1 ≤ i1 < i2 . . . < im ≤ n such that ai1 = b1, ai2 = b2, . . . , aim = bm. A
sequence A = a1, a2, . . . , an is palindromic if A and its reverse are the same sequence,
that is, an−i+1 = ai for i = 1, 2, . . . , n. Examples of palindromic strings (recall strings are
sequences over an alphabet) are A, MALAYALAM, KAYAK, 374473, 47374.

• Describe an efficient algorithm that outputs the length of the shortest palindromic
supersequence of a given sequence A. For example if SUPERSEQUENCE is the
input string (viewed as a seqeunce), your algorithm should return 21 (the length of
SUPECNRSEQUQESRNCEPUS). Assume A is given as an array of length n. For full
credit explain how to compute the optimum value in O(n) space.

• Let X = x1, x2, . . . , xm and Y = y1, y2, . . . , yn be two sequences. Describe an
efficient algorithm to compute the length of the shortest common palindromic super-
sequence of X and Y . That is, if the answer is h then there is a palindromic sequence
Z of length h such that Z is a supersequence of X and Z is a supersequence of Y .
For example if X is the string 374 and Y is the string 473 then the answer should be
5 (the length of 37473 or that of 47374).

2. Given a graph G = (V,E) a matching is a subset of edges in G that do not intersect. More
formally M ⊆ E is a matching if every vertex v ∈ V is incident to at most one edge in
M . Matchings are of fundamental importance in combinatorial optimization and have
many applications. Given G and non-negative weights w(e), e ∈ E on the edges one
can find the maximum weight matching in a graph in polynomial time but the algorithm
requires advanced machinery and is beyond the scope of this course. However, finding the
maximum weight matching in a tree is easier via dynamic programming.

Figure 1. A tree and two examples of matchings. Edges in the matching are shown in bold.

• Not to submit: Given a tree T = (V,E) and non-negative weights w(e), e ∈ E,
describe an efficient algorithm to find the weight of a maximum weight matching in
T .

• Solve the previous part even though it is not required to be submitted for grading. It
will help you think about this part.
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(a) Given a tree T = (V,E) describe an efficient algorithm to count the number of
distinct matchings in T . Two matchings M1 and M2 are distinct if they are not
identical as sets of edges. Unlike the maximum weight matching problem, the
problem of couting matchings is known to be hard in general graphs, but trees
are easier.

(b) Write a recurrence for the exact number of matchings in a path on n nodes. For
the base case of a single node tree assume that the answer is 1 since an empty
set is also a valid matching. Would the answer for a path with n = 500 fit in a
64-bit integer word? Briefly justify your answer.

(c) How would you implement your counting algorithm from part (a), more carefully,
to run on a 64 bit machine? Accounting for this more careful implementation,
what is the running time of your algorithm?

(d) Now consider the following generalization of the maximum weight matching
problem. Given T and integer k describe an efficient algorithm that find the
weight of a maximum weight matching with at most k edges in it. For example
if the tree is a path with three edges with weights 2, 3, 2 respectively then the
maximum weight matching is 4 (we take the first and third edges) while the
maximum weight matching with k = 1 has weight 3 (consisting of the second
edge).

3. Not to submit: This is a cute problem from our CA Alex.

After surviving the farmers, Mr. Fox is off on a United States tour, stretching from
Seattle, Washington to Orlando, Florida, with a whole list of cities to visit in order. At
certain cities he will simply say "Ring" and move on, while at others, he will say "Ding"
and spend a night in the city. Because he is so famous, some cities will pay him to stay,
while at other cities he has to rent a hotel room. However, Mr. Fox cannot say "Ring" in
too many cities in a row, because he will then get tired. Note that Mr. Fox must say "Ding"
in Orlando, Florida, his last stop. Given an array A of length n, where A[i] denotes the
cost for spending the night in city i (it can be negative, indicating Mr. Fox gets paid), and
an integer k denoting the maximum number of cities in a row that he can say "Ring" in,
return the maximum profit he can make on this trip. Express your runtime as a function of
n and k. Full credit for a solution that uses O(n) space and time.

4. Not to submit: You are given n jobs each of which has a start time si and an end time ti.
To complete a job it needs to be worked on by a server continuously from its start time to
its end time without interruption. Completing job i earns you a profit pi. You have two
servers available. Describe an efficient algorithm to find the maximum profit that you can
earn by using these servers.
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Solved Problems

5. A string w of parentheses (( and )) and brackets [[ and ]] is balanced if it is generated by
the following context-free grammar:

S → ε | ((S)) | [[S]] | SS

For example, the string w = (([[(())]][[]](())))[[(())(())]](()) is balanced, because w = xy, where

x = (( [[(())]] [[]] (()) )) and y = [[ (()) (()) ]] (()).

Describe and analyze an algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses and brackets. Your input is an array A[1 .. n],
where A[i] ∈ {((,)),[[,]]} for every index i.

Solution: SupposeA[1 .. n] is the input string. For all indices i and j, wewriteA[i] ∼ A[j]
to indicate that A[i] and A[j] are matching delimiters: Either A[i] = (( and A[j] = )) or
A[i] = [[ and A[j] = ]].

For all indices i and j, let LBS(i, j) denote the length of the longest balanced sub-
sequence of the substring A[i .. j]. We need to compute LBS(1, n). This function obeys the
following recurrence:

LBS(i, j) =



0 if i ≥ j

max

 2 + LBS(i+ 1, j − 1)
j−1
max
k=1

(
LBS(i, k) + LBS(k + 1, j)

)
 if A[i] ∼ A[j]

j−1
max
k=1

(
LBS(i, k) + LBS(k + 1, j)

)
otherwise

We can memoize this function into a two-dimensional array LBS[1 .. n, 1 .. n]. Since
every entry LBS[i, j] depends only on entries in later rows or earlier columns (or both), we
can evaluate this array row-by-row from bottom up in the outer loop, scanning each row
from left to right in the inner loop. The resulting algorithm runs in O(n3) time.

LongestBalancedSubsequence(A[1 .. n]):
for i← n down to 1

LBS[i, i]← 0
for j ← i+ 1 to n

if A[i] ∼ A[j]
LBS[i, j]← LBS[i+ 1, j − 1] + 2

else
LBS[i, j]← 0

for k ← i to j − 1
LBS[i, j]← max

{
LBS[i, j], LBS[i, k] + LBS[k + 1, j]

}
return LBS[1, n]

�
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Rubric: 10 points, standard dynamic programming rubric

6. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T .

• MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

• MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun+
∑

children w of v

MaxFunNo(w)

MaxFunNo(v) =
∑

children w of v

max{MaxFunYes(w),MaxFunNo(w)}

(These recurrences do not require separate base cases, because
∑

∅ = 0.) We can memoize
these functions by adding two additional fields v.yes and v.no to each node v in the tree.
The values at each node depend only on the vales at its children, so we can compute all 2n
values using a postorder traversal of T .

BestParty(T ):
ComputeMaxFun(T.root)
return T.root.yes

ComputeMaxFun(v):
v.yes← v.fun
v.no← 0
for all children w of v

ComputeMaxFun(w)
v.yes← v.yes+ w.no
v.no← v.no+max{w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!1) The algorithm spends O(1) time at each
node, and therefore runs in O(n) time altogether. �

1A naïve recursive implementation would run in O(φn) time in the worst case, where φ = (1 +
√
5)/2 ≈ 1.618 is

the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.
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Solution (one function): For each node v in the input tree T , let MaxFun(v) denote the
maximum total “fun” of a legal party among the descendants of v, where v may or may
not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun+
∑

grandchildren w of root

MaxFun(w).

The function MaxFun obeys the following recurrence:

MaxFun(v) = max


v.fun+

∑
grandchildren x of v

MaxFun(x)

∑
children w of v

MaxFun(w)


(This recurrence does not require a separate base case, because

∑
∅ = 0.) We can

memoize this function by adding an additional field v.maxFun to each node v in the tree.
The value at each node depends only on the values at its children and grandchildren, so
we can compute all values using a postorder traversal of T .

BestParty(T ):
ComputeMaxFun(T.root)
party← T.root.fun
for all children w of T.root

for all children x of w
party← party+ x.maxFun

return party

ComputeMaxFun(v):
yes← v.fun
no← 0
for all children w of v

ComputeMaxFun(w)
no← no+ w.maxFun
for all children x of w

yes← yes+ x.maxFun
v.maxFun← max{yes, no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!2)

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. �

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct
solutions.

Standard dynamic programming rubric. 10 points divided as follows

3 points for a clear and correct English description of the recursive function you are
trying to evaluate. (Otherwise, we don’t even know what you’re trying to do.)

-1 for naming the function “OPT” or “DP” or any single letter.

– No credit if the description is inconsistent with the recurrence.

– No credit if the description does not explicitly describe how the function value
depends on the named input parameters.

2Like the previous solution, a direct recursive implementation would run in O(φn) time in the worst case, where
φ = (1 +

√
5)/2 ≈ 1.618 is the golden ratio.

5



CS/ECE 374 Sec A Homework 7 (due Mar 8) Spring 2023

– No credit if the description refers to internal states of the eventual dynamic
programming algorithm, like “the current index” or “the best score so far”.
The function must have a well-defined value that depends only on its input
parameters (and constant global variables).

– An English explanation of the recurrence or algorithm does not qualify. We
want a description of what your function returns, not (here) an explanation of
how that value is computed.

4 points for a correct recurrence, described either using mathematical notation or as
pseudocode for a recursive algorithm.

1 for base case(s). −½ for one minor bug, like a typo or an off-by-one error.

3 for recursive case(s). −1 for each minor bug, like a typo or an off-by-one error.

-2 for greedy optimizations without proof, even if they are correct.

– No credit for the rest of the problem if the recursive case(s) are in-
correct.

3 points for iterative details

+ 1 for describing an appropriate memoization data structure

+ 1 for describing a correct evaluation order; a clear picture is usually sufficient.
If you use nested for loops, be sure to specify the nesting order.

+ 1 for correct time analysis. (It is not necessary to state a space bound.)

• For problems that ask for an algorithm that computes an optimal structure—such
as a subset, partition, subsequence, or tree—an algorithm that computes only the
value or cost of the optimal structure is sufficient for full credit, unless the problem
specifically says otherwise.

• Official solutions usually include pseudocode for the final iterative dynamic program-
ming algorithm, but iterative pseudocode is not required for full credit. If
your solution includes iterative pseudocode, you do not need to separately describe
the recurrence, memoization structure, or evaluation order. But you do still need
and English description of the underlying recursive function (or equivalently, the con-
tents of the memoization structure). Perfectly correct iterative pseudocode,
with no explanation or time analysis, is worth at most 6 points out of 10.

• Partial credit for incomplete solutions depends on the running time of the best pos-
sible completion (up to the target running time). For example, consider a solution
that contains only a clear English description of a function, with no recurrence or
iterative details. If the described function can be developed into an algorithm with
the target running time, the solution is worth 3 points; however, if the function leads
to an algorithm that is slower than the target time by a factor of n, the solution
could be worth only 2 points (= 70% of 3, rounded).

6


